Угловая зависимость сдвига Найта, градиента электрического поля и времени спин-решеточной релаксации ЯМР ⁹Ве в металлическом бериллии

© В.П. Тарасов, Ю.Б. Муравлёв, Г.А. Киракосян

Институт общей и неорганической химии Российской академии наук, 119991 Москва, Россия

E-mail: tarasov@igic.ras.ru

(Поступила в Редакцию 20 августа 2007 г.)

Измерены угловые зависимости частот переходов $(\pm 1/2)$ и $(\pm 1/2 \Leftrightarrow \pm 3/2)$ ЯМР ⁹Ве в поле 7.04 Т для монокристаллической пластинки металлического бериллия. Определены изотропная K_{iso} и анизотропная K_{aniso} составляющие сдвига Найта. Измеренные значения K_{iso} и T_1 рассмотрены в рамках контактного, поляризационного и орбитального вкладов.

Работа выполнена при поддержке РФФИ (проект № 07-03-00252).

PACS: 76.60.Cq, 76.60.Es, 76.60.Gv

1. Введение

Металлический бериллий Ве является диамагнетиком и характеризуется такими необычными для металлов свойствами, как длинное время спин-решеточной релаксации $(T_1T) = 1.86 \cdot 10^4 \, \text{s} \cdot \text{K}$ и отрицательная величина сдвига Найта ЯМР ⁹Ве. Изотропные значения K_{iso} сдвига Найта ЯМР ⁹Ве, измеренные на порошках, имеют значительный разброс по величине — от 0 до -35 ppm [1-4]. Анизотропная составляющая сдвига Найта Kaniso, ожидаемая для гексагональной плотной упаковки (ГПУ), для металлического бериллия неизвестна. Для монокристаллического образца бериллия в спектрах ЯМР ⁹Ве (спин $I = 3/2, \mu = -0.532 \,\mu_{
m B}, eQ = 0.053 \,{
m b})$ можно ожидать угловую зависимость частоты центрального перехода $(\pm 1/2)$, отражающую изотропную и анизотропную составляющие сдвига Найта, и угловую зависимость сателлитных частот ($\pm 1/2 \Leftrightarrow \pm 3/2$), определяющих тензор градиента электрического поля (ГЭП) на ядрах ⁹Ве. С целью определения K_{iso} и K_{aniso}, а также относительной ориентации главных компонент тензора магнитного экранирования и ГЭП, мы впервые сообщаем результаты измерения угловых зависимостей частот переходов $(\pm 1/2)$ и $(\pm 1/2 \Leftrightarrow \pm 3/2)$ ЯМР ⁹Ве. Измерения проводились на пластине монокристаллического бериллия в поле $H_0 = 7.04$ Т [5].

2. Эксперимент

Образец металлического Ве представлял собой монокристаллическую пластину размером $40 \times 4 \times 0.2$ mm. Решеточная ось *с* перпендикулярна плоскости пластины. Чистота образца 97.35%, основные примеси (at.%): Р (0.28), Са (0.14), Fe (0.45), Си (1.40). Глубина скин-слоя на частоте 42.16 МНz при комнатной температуре и удельном сопротивлении $3.5-4.6 \,\mu\Omega \cdot$ ст составляла $15-17 \,\mu$ m, что много болыше толщины поверхностного оксидного слоя из ВеО. Амплитуда ВЧ-поля Н1 направлена вдоль плоскости пластины, варьировался угол θ между H_0 и нормалью n $(n \parallel c)$ к плоскости пластины. За нулевое положение в принята ориентация $c \parallel H_0$. Возбуждение спин-системы ⁹Ве осуществляли по одноимпульсной программе с коротким импульсом 4 µs и периодом повторения 30 s. Длительность 90° импульса 9.5 µs. Число усреднений — 900-1600. Положение сигналов в спектре определяли относительно сигнала водного раствора $Be(NO_3)_2$. Время спин-решеточной релаксации T_1 было измерено для двух ориентаций образца (с || H₀ и $c \perp H_0$) с использованием двухимпульсной программы инверсия-восстановление ($\phi - \tau - \phi/2$), где $\phi = 4.75 \, \mu$ s. Все измерения были выполнены при комнатной температуре (~ 295 К). После завершения измерений из образца вырезали кусочек размером 4 × 4 × 0.2 mm, который затем подвергали отжигу в вакууме 10^{-7} Torr при 850° C в течение часа. Для отожженного образца были записаны спектры ЯМР ⁹Ве в зависимости от ориентации с шагом 10°. Никаких принципиальных различий в ориентационных зависимостях спектров ЯМР ⁹Ве для отожженного и неотожженного образцов не обнаружено.

3. Результаты

⁹Be Ha рис. 1 приведены спектры ЯМР в зависимости от ориентации образца относительно Н₀ $(-90 < \theta < 90^{\circ})$. Спектр состоит из центрального сигнала, соответствующего переходу (±1/2), и двух сателлитов, отвечающих переходам $(\pm 1/2 \Leftrightarrow \pm 3/2)$. Форма сигнала каждого перехода описывается контуром Лоренца. Полная ширина линии на полувысоте центрального перехода монотонно зависит от ориентации образца, проявляя максимум $3.7 \pm 0.1 \,\mathrm{kHz}$ при $\theta = 0^\circ$ и минимум $2.8 \pm 0.1 \,\text{kHz}$ при $\theta = \pm 90^{\circ}$. Этот результат свидетельствует скорее о том, что ширина линии в основном определяется прямым диполь-дипольным взаимодействием, а вклад косвенного диполь-дипольного

Рис. 1. Спектры ЯМР ⁹Ве (42.16 MHz) монокристаллической пластинки бериллия при различных значениях угла θ между нормалью *n* к плоскости пластины и направлением магнитного поля H_0 . При $n \parallel H_0$ угол $\theta = 0$.

взаимодействия спинов Ве ничтожно мал [2]. Следует отметить, что при углах, близких к $\theta = \pm 90^{\circ}$, соотношение измеренных интегральных интенсивностей сигналов составляет 2.6:4:2.5, в то время как для совершенного монокристалла это соотношение 3:4:3, а для порошка — 0.45:4:0.45 [6]. Таким образом, угловая зависимость спектров ЯМР ⁹Ве показывает изменение положения и ширины линий центрального перехода и сателлитов, а также заметное уменьшение интенсивности сателлитых переходов. Последнее обстоятельство свидетельствует о наличии в образце квадрупольных неоднородностей, обусловленных структурными искажениями за счет примесей и механических дислокаций (как результат прокатки образца Ве).

Положение центрального сигнала и сателлитов в частотной шкале в зависимости от угла θ приведено на рис. 2 и 3. При $\theta = \pm 90^{\circ}$ величина сдвига Найта $K_{\perp} = +100 \, \text{Hz}$ (2.4 ppm), при $\theta = 0^{\circ}$ значение $K_{\parallel} = -500 \, \text{Hz}$ (-11.9 ppm). Угловая зависимость частоты перехода (±1/2) описывается выражением $v_{\pm 1/2}(\theta) \, [\text{Hz}] = -83 - 180(3\cos^2\theta - 1)$ (рис. 2). Из этой зависимости следует, что $K_{\rm iso} = -83$ Hz $(-2 \, \rm ppm)$ и $K_{aniso} = -180 \,\text{Hz}$ (-4.3 ppm). Полученное значение $K_{\text{aniso}} = -4.3 \,\text{ppm}$ согласуется с независимой оценкой из данных магнитной восприимчивости для металлического Be: $\chi_{\parallel}^{orb} = -4.524 \cdot 10^{-6}$ CGS, $\chi_{\perp}^{\text{orb}} = -1.565 \cdot 10^{-6} \text{ CGS}$ [7]. Действительно, $K_{\text{aniso}}^{\text{orb}} = 1/3(\mu_{\text{B}}A)^{-1}H_{\text{orb}}(\chi_{\parallel}^{\text{orb}} - \chi_{\perp}) = -3.8 \text{ ppm}$, где μ_{B} —

Рис. 2. Угловая зависимость частоты центрального перехода $(\pm 1/2)$ ЯМР ⁹Ве, соответствующей сдвигу Найта. Рассчитанные точки соответствуют уравнению $\nu(\pm 1/2) = -83 - 180(3\cos^2 \theta - 1)$.

Рис. 3. Угловые зависимости частот переходов $(\pm 1/2 \Leftrightarrow \pm 3/2)$ ЯМР ⁹Ве (kHz), отражающих квадрупольное взаимодействие.

магнетон Бора, A — число Авогадро, $H_{orb} = 2\mu_{\rm B} \langle r^{-3} \rangle_{2p} = 2.15 \cdot 10^4 \,{\rm Oe}, \langle r^{-3} \rangle_{2p} = 1.16 \cdot 10^{24} \,{\rm cm}^{-3}$ [4]. зависимости Угловые сателлитных переходов $(\pm 1/2 \Leftrightarrow \pm 3/2)$ описываются как $v_O(\theta) [kHz] =$ $(\pm 1/2 \nu_0^0 (3 \cos^2 \theta - 1))$, где $\nu_Q^0 = 29.8 \,\mathrm{kHz}$ и соответствует константе квадрупольного взаимодействия (ККВ) ⁹Ве 59.6 kHz (рис. 3). Полученное значение ККВ хорошо согласуется с данными [3,4]. При данной ККВ сдвиг сигнала центрального компонента за счет квадрупольного взаимодействия второго порядка не превышает 10 Hz (0.25 ppm), что меньше погрешности измерений.

Измеренные значения времени спин-решеточной релаксации при 295 К составляли для паралелльной ориентации $T_{1\parallel} = 19.2 \pm 1.7$ s и для перпендикулярной ориентации $T_{1\perp} = 16.3 \pm 1.5$ s. Столь близкие значения T_1

для двух крайних ориентаций образца показывают, что анизотропный вклад в релаксацию чрезвычайно мал.

4. Обсуждение

4.1. ГЭП ⁹Ве. В металлах ГЭП представляется в виде суммы решеточного вклада и вклада электронов проводимости $eq = (1 - \gamma_{\infty})eq^{\text{lat}} + eq^{\text{el}}$ [8]. Решеточный вклад, вычисленный по методу [9], составляет $eq^{\text{lat}} = 0.2928Za^{-3}$, где параметр решетки a = 2.2859 Å. При Z = 2, eQ = 0.053 b и $\gamma_{\infty} = +0.185$ величина $(1 - \gamma_{\infty})eq^{\text{lat}} = 1.98 \cdot 10^{13} \text{ CGS/cm}^3$, что превышает измеренную величину eq^{\exp} =1.38 \cdot 10¹³ χ^{\exp} (MHz)/Q(b)= $= |1.55| \cdot 10^{13} \text{ CGS/cm}^3$ и подтверждает сделанный ранее в [4] вывод о наличии отрицательного вклада в ГЭП от свободных электронов. Действительно, электронный вклад в ГЭП, вычисленный в [8], является отрицательным и составляет $eq^{\rm el} =$ $= -2.64 \cdot 10^{13}$ CGS/cm³. Однако суммарная величина вычисленного $(eq^{\text{calc}} = -0.66 \cdot 10^{13} \text{ CGS/cm}^3)$ и измеренного ГЭП $(eq^{exp} = -1.55 \cdot 10^{13} \text{ CGS/cm}^3)$ различается более чем в 2 раза.

С учетом данных по квадрупольным взаимодействиям для других металлов взаимная компенсация решеточного и электронного вкладов является достаточно общим свойством для металлов с ГПУ-решеткой [10].

4.2. Спин-решеточная релаксация и сдвиг Найта. В металлическом бериллии $(T_1T)^{-1} = \text{const}$ в диапазоне 1.5–400 К [1,2], что свидетельствует о магнитном механизме спин-решеточной релаксации за счет взаимодействия спина Ве с проводящими электронами на уровне Ферми. В этом случае вклады в T_1^{-1} и в сдвиг Найта К могут возникать от четырех видов магнитных взаимодействий [4]:

1) Ферми-контактное взаимодействие с электронами в частично заполненных 2s-состояниях (K_s , $(T_1T)_s^{-1}$).

2) Контактное взаимодействие с электронами в заполненных $1s^2$ -состояниях за счет их поляризации $(K_{cp}, (T_1T)_{cp}^{-1}).$

3) Орбитальное взаимодействие с частично заполненными 2p-состояниями (K_{orb} , $(T_1T)_{orb}^{-1}$).

4) Спин-дипольное взаимодействие с 2*p*-электронами. Взаимодействия 1) и 2) отвечают положительному и отрицательному вкладам в *K*, что может приводить к их взаимному уничтожению и является объяснением чрезвычайно малых значений *K* [4]. Взаимодействия 3) и 4) приводят к анизотропии сдвига Найта. Для оценки отдельных вкладов в изотропный сдвиг Найта $K_{iso} = -2$ ppm и скорость спин-решеточной релаксации в $(T_1T)_{exp}^{-1}$ представим эти величины в виде суммы

$$K_{\rm iso}^{\rm exp} = K_s + K_{\rm cp} + K_{\rm orb}^{\rm iso},$$
$$(T_1T)_{\rm exp}^{-1} = (T_1T)_s^{-1} + (T_1T)_{\rm cp}^{-1} + (T_1T)_{\rm orb}^{-1}, \qquad (1)$$

где $K_{\rm orb}^{\rm iso} = 1/3K_{\parallel} + 2/3K_{\perp} = -2.37$ ppm; орбитальным вкладом в релаксацию $(T_1T)_{\rm orb}^{-1}$ можно пренебречь, по-

Константы	квадрупольного	взаимодействия	χ,	сдвиг	Найта	K	И	времена	спин-решеточной	релаксации	T_1	В	металлическом
бериллии*													

Вид образца, чистота, %	KKB, kHz	K _{iso} , ppm	$K_{\rm aniso}$, ppm	T_1 , s	Литературная ссылка
Порошок, 99.9	61.8	-25	—	55	[4]
Порошок**	56.4	-25 ± 6	-3	-	[3]
Порошок, 99.9	57 ± 1	_	—	50	[2]
Порошок**	60.4	_	—	-	[6]
Порошок ^{***} , 99.0 98.4 97.3 95.95	- - - -	-7 12 8 34	- - - -	46 37 23.9 12.9	[1]
Монокристалл, 97.37	59.6 ± 2.5	-2.0 ± 0.4	-4.3 ± 0.4	$egin{array}{llllllllllllllllllllllllllllllllllll$	Наст. раб.

* Все данные при комнатной температуре.

** Чистота образца и размер частиц не указаны.

*** Различия в чистоте образца определяются содержанием Ni.

прямое вычисление этого вклада дает значение меньше, чем погрешность измерения:

$$(T_1T)_{\rm orb}^{-1} = 2h\gamma_{\rm Be}^2 k_{\rm B} [N(E_{\rm F})H_{\rm orb}]^2 \cong 0.7 \cdot 10^{-6} \, {\rm s}^{-1} \cdot {\rm K}^{-1},$$

где h — постоянная Планка, $k_{\rm B}$ — постоянная Больцмана, $\gamma_{\rm Be}$ — гиромагнитное отношение спина Ве $(2\pi \cdot 598 \, {\rm Hz} \cdot {\rm G}^{-1})$, $N(E_{\rm F}) = 0.077 \cdot 10^{11} \, {\rm CGS}$ /atom — плотность состояний на уровне Ферми [1]. Величины $(T_1 T)_s^{-1}$ и $(T_1 T)_{\rm cp}^{-1}$ связаны с K_s и $K_{\rm cp}$ соотношениями Корринги

$$(T_1 T)_s^{-1} = 4\pi k_{\rm B} \hbar^{-1} (\gamma_{\rm Be} / \gamma_e)^2 K_s^2,$$

$$(T_1 T)_{\rm cp}^{-1} = 4\pi k_{\rm B} \hbar^{-1} (\gamma_{\rm Be} / \gamma_e)^2 K_{\rm cp}^2 q,$$
 (2)

где q = 1/3 — фактор орбитального вырождения для чистой 2*p*-орбитали [4]. При $(T_1T)_{exp}^{-1} = 1.92 \cdot 10^{-4} \text{ s}^{-1} \cdot \text{K}^{-1}$ (среднее значение T_1 для двух ориентаций) из решения системы (1) и (2) находим $K_s = 26.47 \text{ ррm}, \quad K_{cp} = -26.1 \text{ ррm}, \quad (T_1T)_s^{-1} = 0.52 \cdot 10^{-4} \text{ s}^{-1} \cdot \text{K}^{-1}, \quad (T_1T)_{cp}^{-1} = 1.52 \cdot 10^{-4} \text{ s}^{-1} \cdot \text{K}^{-1}.$

Следует подчеркнуть, что измеренные значения сдвига Найта K и времени спин-решеточной релаксации T_1 заметно зависят от чистоты образца, о чем свидетельствует сводка данных по значениям K и T_1 , полученных разными авторами (см. таблицу). Наличие примесей сокращает значение T_1 и смещает величину K в область положительных значений. Изученный в настоящей работе образец Ве содержал примеси Fe и Cu, что, по-видимому, и явилось причиной относительно короткого T_1 и малого отрицательного K.

5. Заключение

В изученном монокристаллическом образце металлического Ве определены изотропный $K_{iso} = -83$ Hz (-2 ppm) и анизотропный $K_{aniso} = -180$ Hz (-4.3 ppm) вклады в сдвиг Найта ЯМР ⁹Ве. Из сопоставления угловых зависимостей $\nu(\theta)$ переходов ($\pm 1/2$) и ($\pm 1/2 \Leftrightarrow \pm 3/2$) следует, что направление главных значений тензора магнитного экранирования и ГЭП совпадает. Определены контактный, поляризационный и орбитальный вклады в сдвиг Найта и скорость спин-решеточной релаксации. Полученные значения вкладов свидетельствуют о значительной доле 2*p*-электронов на поверхности Ферми для бериллия.

Список литературы

- M.N. Alexander, P.L. Sagalyn, J.A. Hofmann, W.J. Croft. Phys. Rev. B 22, 32 (1980).
- [2] H. Alloul, C. Froidevaux. J. Phys. Chem. Sol. 29, 1623 (1968).
- [3] W.T. Anderson, M. Ruhlig, R.R. Hawitt. Phys. Rev. 161, 293 (1967).
- [4] D.E. Barnaal, R.G. Barnes, R.B.R. McCart, L.W. Mohn, D.R. Torgeson. Phys. Rev. 157, 510 (1967).
- [5] V.P. Tarasov, Yu.B. Muravlev, G.A. Kirakosyan. Abstr. of Int. Symp. NMRCM. St. Petersburg, Russia (2007). P. 125.
- [6] B.R. Mc Cart, R.G. Barnes. J. Chem. Phys. 48, 127 (1968).
- [7] C.S. Bowring, V.T. Wynn. Phys. Lett. A 33, 401 (1970).
- [8] T.P. Das, P.C. Schmidt. Z. Naturforsch. A 41, 47 (1986).
- [9] F.W. de Wette. Phys. Rev. **123**, 103 (1961).
- [10] V.P. Tarasov, Yu.B. Muravlev, K.E. Guerman. J. Phys.: Cond. Matter 13, 11 041 (2001).