Квазиупругое рассеяние нейтронов водной дисперсией наноалмазов

© Н.М. Благовещенский¹, А.Г. Новиков¹, Н.Н. Рожкова²

1 ГНЦ РФ Физико-энергетический институт им. А.И. Лейпунского,

Обнинск, Россия

² Институт геологии Карельского научного центра РАН,

Петрозаводск, Россия

E-mail: novikov@ippe.ru

Из полученных нами ранее данных по рассеянию нейтронов водной дисперсией наноалмазов методом прямого вычитания извлечена относительная доля молекул воды, входящих в гидратную сферу углеродных наночастиц.

Перспективы практического использования водных растворов наночастиц углерода (УНЧ), например, медико-биологического характера в виде комплекса типа "фуллерен + гидратная оболочка", стимулировали развитие работ по изучению приповерхностных свойств воды вблизи УНЧ. Ранее нами было исследовано диффузионное поведение воды вблизи поверхности растворенных в ней ультрадисперсных наноалмазов с концентрацией ~ 80 mg/l и средним размером УНЧ ~ 8 nm [1]. Эксперимент был выполнен на нейтронном спектрометре неупругого рассеяния ДИН–2ПИ (реактор ИБР–2, Лаборатория нейтронной физики им. И.М. Франка, ОИЯИ, Дубна) [2] при начальной энергии нейтронов 3 meV и разрешении в упругом пике ~ 140 meV. Температура образцов поддерживалась на уровне ~ 12° С.

Было установлено, что по сравнению с объемной водой диффузионное поведение молекул воды, примыкающих к поверхности наноалмаза, заметно меняется. Так, коэффициент самодиффузии по сравнению с коэффициентом для объемной воды уменьшается в 1.5 раза; среднее время оседлой жизни возрастает в 4 раза; суще-

Рис. 1. Относительные доли молекул гидратационной воды в дисперсионной воде, полученные из модельного описания спектров квазиупругого рассеяния дисперсионной и объемной водой (темные точки) и прямым вычитанием этих спектров (светлые точки).

ственным образом уменьшается и вращательная подвижность молекул. Оцененная нами относительная доля молекул гидратационной воды составила $\sim (2.9 \pm 0.3)\%$ (2–3 молекулярных слоя, рис. 1). Доля эта была получена из анализа формы квазиупругого пика, представленного модельным образом как суперпозиция лоренцовских кривых, соответствующих трансляционной и вращательным компонентам диффузионной подвижности молекул воды. Пример такого разложения можно видеть на рис. 2.

Рис. 2. Пример разложения пиков квазиупругого рассеяния для дисперсионной воды на трансляционную, вращательные компоненты и гидратационную добавку.

Однако весьма малое значение этой величины, полученное к тому же еще и с использованием модельных представлений, оставляло некоторую неудовлетворенность и порождала сомнения в достоверности такого результата. В связи с этим, было решено вернуться к прошлым данным и предпринять оценку относительной доли гидратационной воды путем непосредственного вычитания спектров квазиупругого рассеяния нейтронов, полученных на дисперсионной и объемной воде. Относительная нормировка этих спектров проводилась по крыльям динамического структурного фактора, где

Рис. 3. Типичные спектры квазиупругого рассеяния для гидратационной воды (темные точки), полученные прямым вычитанием соответствующих спектров дисперсионной (светлые точки) и объемной воды (сплошные кривые), нормированных по крыльям в области передач энергии $\varepsilon = \pm (0.5 - 1.4)$ meV.

эффектами рассеяния на гидратационной воде можно было пренебречь вследствие существенно более узкого квазиупругого пика, ей соответствующего. Результаты такого вычитания для нескольких передач волнового вектора нейтрона *Q* показаны на рис. 3, а получен-

ε, meV

Рис. 4. Разложение полуширины квазиупругого пика гидратационной воды на трансляционную и вращательную составляющие. Сплошная кривая — описание трансляционной составляющей моделью [10]. Заштрихованная площадь — область ошибок полуширины ΔE .

ная таким методом относительная доля гидратционной воды составила $\sim (3 \pm 0.3)\%$ (рис. 1), что близко к соответствующей оценке, приводимой нами ранее [1]. Полуширина квазиупругого пика гидратационной воды и полученные из ее анализа традиционным образом диффузионные характеристики гидратационной воды показаны на рис. 4. Видно, что они близки к полученным ранее [1] и свидетельствуют о существенном замедлении диффузионной подвижности молекул воды в области, прилежащей к поверхности УНЧ.

Выполненный в [1] анализ формы квазиупругих пиков принято называть в литературе "традиционным". Однако наряду с таким подходом при анализе результатов квазиупругого рассеяния и диффузионных процессов в жидкостях, находящихся в переохлажденном состоянии или в условиях ограниченной геометрии, успешно используются и другие подходы, основанные на выводах теории взаимодействующих мод [3], в частности, так называемая модель релаксирующего ящика (model of relaxing cage, MRC) [4-6]. Согласно этой модели предполагается, что диффузионный акт в жидкости может реализоваться только при условии, когда ближайшее окружение частицы претерпело распад или существенную перестройку. Эти процессы получили в литературе название α-релаксации (медленной релаксации) [7,8]. В рамках этого подхода промежуточная функция рассеяния I(Q, t) записывается в форме так называемого "stretched exponent", учитывающей возможный неэкспо-

Рис. 5. Верхняя часть рисунка: Q — зависимость среднего экспериментального времени α -релаксации в гидратационной воде; сплошная кривая — его аппроксимация выражением $\langle \tau_W \rangle (Q) = 31Q^{-1.7}$ ($\gamma = 1.7 \pm 0.1$, оценена в области $0.5 \text{ Å}^{-1} < Q < 1.4 \text{ Å}^{-1}$); штриховая кривая — данные молекулярно-динамического моделирования для $t = -20^{\circ}$ C [9]; заштрихованная площадь соответствует области ошибок в экспериментальном $\langle \tau_W \rangle$. Нижняя часть рисунка: Q — зависимость среднего экспериментального времени α -релаксации в объемной воде; сплошная кривая — его аппроксимация выражением $\langle \tau_W \rangle (Q) = 9.0Q^{-2.02}$; штриховая кривая — молекулярно-динамические данные для $t = 11^{\circ}$ C [9].

ненциальный распад промежуточной функции рассеяния

$$I(Q, t) = KWW(t) = \exp\left[-(t/\tau_W)^{\beta}\right]$$
(1)

следствием чего оказывается нелоренцевская форма динамической функции рассеяния (или закона рассеяния)

$$S_{KB}(Q,\varepsilon) = \frac{1}{\pi\hbar} \int_{0}^{\infty} \exp\left[-(t/\tau_W)^{\beta}\right] \cos(\varepsilon t/\hbar) dt, \qquad (2)$$

где τ_W — время так называемой медленной (α) релаксации, β — величина, называемая параметром формы (при $\beta = 1 \ S_{KB}(Q, \varepsilon)$ превращается в простой лоренциан). Оба параметра τ_W и β , так же как и среднее время релаксации

$$\langle \tau_W \rangle = \int_0^\infty dt KWW(t) = \frac{\tau_W}{\beta} \Gamma\left(\frac{1}{\beta}\right),$$
 (3)

зависят от Q, причем последняя величина может быть представлена степенной функцией

$$\langle \tau_W \rangle = \tau_0 Q^{-\gamma}. \tag{4}$$

В случае простой (непрерывной) диффузии $\gamma = 2$, а при отклонении от гидродинамического предела (например, в условиях переохлаждения или ограниченной геометрии) γ становится меньше 2.

Результаты анализа наших экспериментальных результатов на основе описанной выше модели (MRC) показаны на рис. 5. Полученные нами релаксационные характеристики (параметры τ_W , β и γ) объемной воды близки к тому, что известно из литературы [9]. Что касается времени релаксации τ_W гидратационной воды, то оно существенно превосходит эту величину для объемной воды и свидетельствует о явном замедлении диффузионных процессов в окрестности УНЧ. Согласно [9], полученные нами релаксационные характеристики гидратационной воды примерно соответствуют переохлажденной воде температуры $\sim -(15-20)^{\circ}$ С. Все это еще раз подтверждает, что молекулярная подвижность гидратационной воды по сравнению с объемной водой заметно подавлена. Можно предполагать, что в наибольшей степени этот вывод относится к первому молекулярному слою воды, непосредственно примыкающему к УНЧ.

Список литературы

- [1] Н.М. Благовещенский, А.Г. Новиков, Н.Н. Рожкова. ФТТ **52**, *5*, 904 (2010).
- [2] User Guide. Neutron Experimental Facilities for Condensed Matter Investigations at FLNP JINR. Ed. V. Sikolenko. JINR Press, Dubna (1997). P. 25.
- [3] W. Goetze, J. Sjorgen. Rep. Prog. Phys. 55, 241 (1992).
- [4] S.-H. Chen, P. Gallo, F. Sciortino, P. Tartaglia. Phys. Rev. E 56, 4231 (1997).
- [5] S.-H. Chen, C. Liao, F. Sciortino, P. Gallo, P. Tartaglia. Phys. Rev. E 59, 6708 (1999).
- [6] V. Grupi, D. Majolino, P. Migliardo, V. Venuti. J. Chem. Phys. B 106, 10884 (2002).
- [7] J.-M. Zanotti, M.-C. Bellissent-Funel, S.-H. Chen. Phys., Rev. E 59, 3084 (1999).
- [8] M.-C. Bellissent-Funel, S. Longeville, J.-M. Zanotti, S.-H. Chen. Phys. Rev. Lett. 85, 3644 (2000).
- [9] P. Gallo, F. Sciortino, P. Tartaglia, S.-H. Chen. Phys. Rev. Lett. 76, 2730 (1996).
- [10] В.С. Оскотский. ФТТ 5, 1082 (1965).