09

Люминесценция кристаллов LaBr₃ : Ce, Hf при возбуждении фотонами ультрафиолетового, вакуумного ультрафиолетового и рентгеновского диапазонов

© В.А. Пустоваров¹, А.Н. Разумов¹, Д.И. Выпринцев²

¹ Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия ² ООО "Старк", Обнинск, Россия E-mail: vpustovarov@bk.ru

(Поступила в Редакцию 10 июня 2013 г.)

Выполнено исследование с применением синхротронного излучения и методов времяразрешенной люминесцентной ультрафиолетовой и вакуумной ультрафиолетовой спектроскопии, а также оптической абсорбционной и термоактивационной спектроскопии. В сцинтилляционных спектрометрических кристаллах LaBr₃ : Се, Hf, отличающихся пониженной гигроскопичностью, наряду с Ce³⁺-центрами в регулярных узлах кристаллической решетки обнаружены Ce³⁺-центры в области дефектов кристаллической структуры. Помимо этого обнаружена фотолюминесценция (ФЛ) новых точечных дефектов, формирующих в спектрах ФЛ широкую полосу в области 500–600 nm. Определена минимальная энергия межзонных переходов $E_s \sim 6.2 \text{ eV}$ в LaBr₃. При энергиях возбуждения ФЛ более 13 eV (более $2E_g$) обнаружен эффект размножения электронных возбуждений. Термоактивационные исследования показывают каналы передачи энергии электронных возбуждений примесным Се³⁺-центрам.

Работа частично поддержана лабораторией HASYLAB, DESY (проекты II-20110050, II-20080119 EC) и министерством образования и науки РФ (соглашение 14.А18.21.0076).

1. Введение

Кристаллы LaBr₃: Се являются современным сцинтилляционным материалом для спектрометрических детекторов фотонного излучения. Эти кристаллы производства компании Saint-Gobain характеризуются высоким световыходом ($\sim 60\,000$ photon/MeV), малым временем затухания сцинтиимпульса (16-25 ns), высокой стабильностью параметров в широком диапазоне температур. Благодаря высокому энергетическому разрешению, хорошей радиационной стойкости они актуальны для применения в спектрометрии и различных медицинских приложениях [1-3]. Механизм формирования сцинтилляционного импульса в этих кристаллах в настоящее время достаточно изучен благодаря исследованиям люминесценции при различных видах возбуждения, а также исследованию процессов переноса энергии электронных возбуждений к примесному Се³⁺-центру [4-7]. Основная проблема в настоящее время состоит в изучении энергетической непропорциональности световыхода в гамма-диапазоне и, особенно, в рентгеновской области спектра [8,9]. В работе [8] эта зависимость была изучена с применением синхротронного излучения (СИ) в рентгеновском диапазоне (1.4–100 keV); $d \rightarrow f$ -фотолюминесценция (ФЛ) ионов Ce³⁺ и автолокализованных экситонов (АЛЭ) при возбуждении фотонами ультрафиолетового (UV) и вакуумного ультрафиолетового (VUV) диапазонов исследовалась в LaBr3 : Се лишь в работах [4,5]. При этом в LaBr₃ предположительно даны

оценки энергии края фундаментального поглощения $E_{\rm fa} = 5.2 \,{\rm eV}$, экситонных состояний 5.4 eV и минимальной энергии межзонных переходов $E_g = 5.9 \,{\rm eV}$ при $T = 10 \,{\rm K}$. В более поздних работах этот результат, приведенный в [4,5], постоянно цитируется, хотя в дальнейшем подобные исследования кристаллов LaBr₃ в VUV-диапазоне не выполнялись и полученный результат явно неоднозначен. Поэтому изучение края фундаментального поглощения этих кристаллов и исследование ФЛ при UV/VUV-фотонном возбуждении остаются актуальными.

В наших предыдущих работах [10,11] изучена энергетическая непропорциональность световыхода кристаллов LaBr₃ : Се в области экстремального ультрафиолета (XUV) в диапазоне 45-290 eV. В работе [12] представлены наши первые результаты исследований LaBr₃ : Се при возбуждении ФЛ в VUV области. Поскольку кристаллы LaBr₃ : Се являются гигроскопичными, в России была разработана методика выращивания кристаллов LaBr₃: Се с добавкой гафния, получен патент [13]. Такие кристаллы LaBr₃: Ce, Hf отличаются пониженной гигроскопичностью и представляют явный интерес для практической спектрометрии. Поэтому целью настоящей работы является изучение люминесценции в кристаллах LaBr₃: Ce, Hf российского производства с пониженной гигроскопичностью. Работа выполнена с применением методов времяразрешенной низкотемпературной UV- и VUV-спектроскопии, а также оптической абсорбционной и термоактивационной спектроскопии.

2. Детали эксперимента

2.1. Возбуждение ФЛ в UV- и VUV-диапазонах. Времяразрешенные и обычные времяинтегрированные спектры ФЛ в области 1.5-5.0 eV, спектры возбуждения ФЛ в области 3.7-32.0 eV и кинетика затухания ФЛ были измерены с применением СИ на станции SUPERLUMI (лаборатория HASYLAB Немецкого электронного синхротрона DESY, Гамбург). Для возбуждения ФЛ использовался монохроматор со сменными решетками с Аl- или Pt-покрытием (спектральное разрешение 3.2 Å). Спектры ФЛ были измерены с применением 0.3m-монохроматора модели ARC Spectra Pro-308i и фотоэлектронного умножителя R6358P (Hamamatsu) в двух временны́х окнах $\Delta t_1 = 11$ ns (быстрый компонент) и $\Delta t_2 = 30$ ns (медленный компонент), которые устанавливались с задержкой относительно начала возбуждающего импульса СИ на время $\delta t_1 = 3.0 \,\mathrm{ns}$ и $\delta t_2 = 36 \,\mathrm{ns}$ соответственно. Спектры возбуждения ФЛ нормированы на равное число падающих на образец фотонов с применением салицилата натрия. Временное разрешение детектирующей системы составляло 0.8 ns (FWHM), временной интервал между импульсами СИ — 96 ns. Детали эксперимента, выполненного при XUV-возбуждении, представлены в работах [10,11].

Для измерения спектров возбуждения ФЛ в области низких энергий (2.8–5.5 eV) использовались 400 W дейтериевая газоразрядная лампа и призменный двойной монохроматор ДМР-4. Спектры возбуждения ФЛ нормировались на равное число возбуждающих фотонов с применением желтого люмогена.

2.2. Рентгенолюминесценция и термоактивационные исследования. Спектры рентгенолюминесценции (РЛ) и кривые термовысвечивания были измерены в Уральском федеральном университете с применением рентгеновского аппарата УРС-55А (Си-анод, 30 kV, 10 mA), монохроматора МДР-23 и фотоумножителя ФЭУ-106. Облучение образцов проводилось при T = 90 K, кривые термовысвечивания измерялись с постоянной скоростью нагрева, равной 0.3 K/s.

2.3. Образцы. Исследуемые монокристаллы высокого оптического качества (5 wt.% церия и 0.01–0.5 wt.% гафния в шихте) были выращены методом Бриджмена в кварцевых ампулах со скоростью 1 mm/h в ООО "Старк" [13]. Кристаллы сертифицированы методами рентгеновской дифракции, масс-спектрометрии с индуктивно связанной плазмой (MC), а также методом рентгеновского, флуоресцентного анализа. Метод MC показывает содержание основных примесей (Al, Ca, Zn, Ga) в кристалле на уровне 10^{-3} wt.%. Введение HfBr₄ в исходный расплав, как показано в [13], уменьшает гигроскопичность кристаллов. При этом концентрация Hf в исследуемых кристаллах по данным MC возрастает на два порядка, но тем не менее не превышает 10^{-3} wt.%.

Контакт с атмосферой гигроскопического LaBr₃ приводит к деградации поверхности образца вследствие образования кристаллических гидратов. Поэтому в наших экспериментах исследуемые образцы размером $5 \times 5 \times 1$ mm скалывались от були в атмосфере сухого горячего воздуха и немедленно устанавливались в криостат с быстрой безмасляной вакуумной откачкой (остаточное рабочее давление в криостате ~ $1 \cdot 10^{-8}$ mbar).

3. Результаты эксперимента

Спектры люминесценции LaBr3 : Се и LaBr3 : Се, Нf при рентгеновском и XUV-возбуждениях практически идентичны, (рис. 1). Спектры содержат перекрывающиеся полосы при 356 и 382 nm, которые формируются типичными излучательными $d \to f$ -переходами в ионе Се³⁺ [1,5,6]. Выход РЛ кристаллов с добавкой Нf практически не меняется. Дополнительная широкая полоса с максимумом 450 nm с микросекундной кинетикой затухания появляется при низких температурах ($T < 100 \, {\rm K}$). Согласно [5], эта полоса формируется излучением АЛЭ. Спектры ФЛ значительно зависят от энергии возбуждения (E_{exc}). Спектр ФЛ LaBr₃ : Се при T = 8 К при возбуждении в области фундаментального поглощения $(E_{\rm exc} = 6.8 \, {\rm eV})$ соответствует спектрам РЛ или спектрам ФЛ при XUV-возбуждении. В противоположность этому спектры ФЛ LaBr₃ : Се, Нf сдвинуты в длинноволновую область и содержат узкие полосы 380 and 412 nm, а также широкую полосу в области 500-600 nm с микросекундной кинетикой затухания ФЛ (рис. 2). Кинетика затухания полос $\Phi \Pi$ 380 и 412 nm при $E_{\rm exc} = 3.7 - 5.0 \, {\rm eV}$ моноэкспоненциальна, время затухания $\tau = 20 \pm 1$ ns. Это время затухания меньше, чем время затухания люминесценции Ce³⁺ в LaBr₃ : Ce ($\tau = 23-25$ ns в зависимости от E_{exc} , см. более подробно [12]).

Рис. 1. Времяразрешенные спектры ФЛ LaBr₃: Се при $E_{\text{exc}} = 130 \text{ eV}$: времяинтегрированный (1), быстрый (2) и медленный (3) компоненты. T = 295 K. На вставке — спектры ФЛ при 7.5 К.

Рис. 2. Времяразрешенные спектры ФЛ LaBr₃ : Се (линии) и LaBr₃ : Се, Hf (точки) при $E_{\rm exc} = 6.8 \, {\rm eV}$: времяинтегрированный (1), быстрый (2) и медленный (3) компоненты. $T = 8 \, {\rm K}$.

Рис. 3. Спектры возбуждения ФЛ для полосы эмиссии 380 nm (1, 2) и спектр поглощения LaBr₃ : Ce, Hf (5%) (3), а также спектр поглощения LaBr₃ : Ce (0.5%) из работы [14] (4), линейная аппроксимация края фундаментального поглощения (5). Показана энергетическая позиция *d*-состояний Ce³-иона в LaBr₃ : Ce при T = 10 K согласно экспериментальным данным [4] и расчетам [7].

Рис. З показывает спектры возбуждения ФЛ для полосы 380 nm при разных температурах и спектр поглощения LaBr₃ : Ce, Hf (5%). Здесь же представлен спектр поглощения LaBr₃ : Ce (0.5%) с низкой концентрацией ионов церия, пересчитанный нами из спектра пропускания, представленного в работе [14]. Оптическая плотность в области 3.5-5.5 eV зависит от концентрации Ce³⁺-ионов, ее значение существенно увеличивается при энергиях выше 5.5 eV. Линейная аппроксимация этого участка спектра позволяет дать оценку энергии начала фундаментального поглощения $E_{\text{fa}} = 5.5 \text{ eV}$. Спектры возбуждения ФЛ для полос 412 и 550 nm показаны на рис. 4. Наблюдаются селективные максимумы в области прозрачности кристалла при энергиях 3.6 и 5.05 eV соответственно.

На рис. 5 показаны времяразрешенные спектры возбуждения ФЛ Се³⁺-центров в широкой области энергий, перекрывающей UV-, VUV-, XUV-диапазоны. Выход люминесценции Се³⁺-центров резко падает при энергиях выше 5.5 eV и плавно растет при $E_{\rm exc} > 13$ eV. Следует отметить, что при $E_{\rm exc} > 70$ eV этот спектр на фоне монотонного роста содержит узкие провалы и широкий минимум в области 120 eV. Спектр возбуждения ФЛ в XUV-области был нами детально проанализирован ранее в работах [11,12]. Кинетика затухания ФЛ значительно зависит от энергии возбуждения (рис. 6). При $E_{\rm exc} > 5.5$ eV в кинетике затухания ФЛ появляются

Рис. 4. Спектры возбуждения ФЛ для полос 412 (1), 550 или 600 nm (2) в LaBr₃ : Ce, Hf.

Рис. 5. Времяразрешенные спектры возбуждения ФЛ (полоса эмиссии 380 nm) LaBr₃: Ce, Hf, T = 295 K: времяинтегрированный (1), быстрый (2) и медленный (3) компоненты. Спектр (1) измерен с применением Al- и Pt-дифракционных решеток.

медленные компоненты микросекундного диапазона. На рис. 7 представлены результаты термоактивационной спектроскопии: спектры РЛ, температурные зависимости РЛ Ce^{3+} -центров и АЛЭ, а также кривые термовысвечивания, измеренные при разных режимах регистрации термостимулированной люминесценции (ТСЛ) для кристаллов LaBr₃ : Ce, Hf, облученных рентгеновским излучением при T = 90 K.

Спектр гамма-источников, измеренный по стандартной методике с применением сцинтилляционного бло-

Рис. 6. Кинетика затухания ФЛ LaBr₃: Ce, Hf (полоса эмиссии 380 nm) при различных энергиях возбуждения $E_{\text{exc}} = 3.8-4.6$ (1), 5.5-6.4 (2), 20.7 eV (3), T = 8 K и $E_{\text{exc}} = 500$ eV, T = 295 K (4).

Рис. 7. Температурные зависимости РЛ в полосах 380 (1) и 450 nm (2). Кривые термовысвечивания облученных рентгеновским излучением при T = 90 K кристаллов LaBr₃ : Ce, Hf, измеренные в интервале длин волн 300–600 nm (3) и в полосе эмиссии Ce³⁺ центров 356 nm (4). На вставке — спектр РЛ при T = 90 (сплошная линия) и 295 K (пунктир).

Рис. 8. Спектр гамма-источников ²²⁸Th, ¹³⁷Cs, ⁶⁰Co, измеренный с применением детектора LaBr₃: Ce, Hf (\emptyset 18 mm, h = 3 mm) и фотоэлектронного умножителя R6231 (Hamamatsu). Порог дискриминации 20 keV, указано энергетическое разрешение для основных гамма-линий.

ка, состоящего из детектора на основе LaBr₃ : Ce,Hf (\emptyset 18 mm, h = 3 mm) и фотоэлектронного умножителя R6231 (Hamamatsu), показан на рис. 8.

Обсуждение экспериментальных данных

Анализ представленных спектров показывает, что в кристаллах LaBr₃ : Ce, Hf наблюдаются Ce³⁺-центры в регулярных узлах кристаллической решетки (обозначим их как А-центры), а также Се³⁺-центры, расположенные рядом с дефектами кристаллической структуры (В-центры). ФЛ В-центров при внутрицентровом возбуждении имеет время затухания $\tau = 20 \pm 1 \, \mathrm{ns}$, оно меньше, чем время затухания $\Phi \Pi A$ -центров ($\tau = 23 \text{ ns}$). Максимумы полос в спектре ФЛ сдвинуты в область низких энергий, стоксов сдвиг практически не меняется. Подобная картина наблюдается в некоторых матрицах, легированных ионами Ce³⁺, и обоснованно интерпретируется как ФЛ Ce³⁺-центров, расположенных рядом с дефектами кристаллической структуры (см. например, [15]). ФЛ В-центров эффективно возбуждается фотонами с энергией 3.6 eV, однако $f \rightarrow d$ -электронные переходы в спектрах поглощения ионов Се³⁺ в этой области энергий не проявляются, что свидетельствует об относительно низкой концентрации В-центров. Именно поэтому в спектрах РЛ можно наблюдать только А-центры.

Помимо *B*-центров в LaBr₃ : Се, Нf обнаружены новые дефекты кристаллической структуры. Спектр ФЛ при T = 8 K имеет широкую полосу с максимумом 550 nm (2.25 eV, FWHM = 0.8 eV). Выход ФЛ максимален при $E_{\rm exc} = 5.05$ eV (стоксов сдвиг составляет 2.8 eV) и падает

при возбуждении в области края фундаментального поглощения и межзонных переходов. С учетом этого можно заключить, что наблюдается внутрицентровая ФЛ, а эффективность передачи энергии экситонами или зонными носителями заряда к этому центру свечения низка. Мы не можем пока связать эту полосу с наличием в кристалле ионов Hf⁴⁺ как ионов замещения и, как следствие, с формированием примесно-вакансионного комплекса. Кроме того, нет люминесцентных проявлений HfO₂, имеющего полосу в низкотемпературных спектрах ФЛ в области 4.2-4.4 eV и полосу возбуждения ФЛ в области 5.8 eV [16]. В этом случае за счет сенсибилизации в спектре возбуждения ФЛ Се³⁺-центров следовало бы ожидать наличие подобной полосы. Структура этого центра ФЛ пока не ясна и требует дополнительных исследований.

Оптическая плотность в области энергий 3.5-5.5 eV зависит от концентрации Се³⁺-ионов. На рис. 3 показана энергетическая позиция *d*-состояний иона Ce³ в LaBr₃: Се согласно экспериментальным данным [4] и расчетам, представленным в работе [7]. Отметим их хорошую корреляцию с измеренным спектром поглощения. Резкий рост и высокое значение оптической плотности в области энергий более 5.7 eV указывают на начало фундаментального поглощения. Линейная аппроксимация, представленная на рис. 3, позволяет оценить энергию начала фундаментального поглощения $E_{\rm fa} = 5.5 \, {\rm eV}$. В этой области энергий в наносекундной кинетике затухания ФЛ Се³⁺-центров появляются медленные компоненты микросекундного диапазона (рис. 5, кривая 3 и рис. 6), что указывает на участие зонных носителей заряда в формировании ФЛ. На основе совокупности представленных выше данных можно оценить минимальную энергию межзонных переходов в LaBr3: $E_g \sim 6.2 \,\mathrm{eV}$. Следует отметить, что значения E_{fa} и E_g отличаются от данных, представленных в работах [5,12]. Однако приведенное значение очень хорошо согласуется с расчетами зонной структуры LaBr₃, согласно которым с учетом спин-орбитального взаимодействия энергия $E_g = 5.99 - 6.19 \,\text{eV}$ [17]. По-видимому, применение других экспериментальных методов, в частности измерение правила Урбаха для LaBr₃, позволит дать точное значение Eg. Определение же Eg исходя из спектров отражения этих кристаллов вряд ли возможно, так как в спектрах отражения кристаллов галогенидов редкоземельных элементов не проявляются экситонные состояния, что определяется pd-генеалогией потолка валентной зоны и зоны проводимости этих кристаллов [18].

Эффективность возбуждения ФЛ примесных Ce³⁺центров падает в области края фундаментального поглощения и межзонных переходов (рис. 5). Такое падение выхода ФЛ связано с конкуренцией захвата зонных носителей заряда на дефекты кристаллической структуры и образованием АЛЭ, но в основном определяется безызлучательной аннигиляцией зонных носителей заряда на поверхности кристалла вследствие высокого значения коэффициента поглощения. При увеличении Eexc c ростом кинетической энергии зонных носителей заряда выход ФЛ стабилизируется, а при энергиях $E_{\rm exc} > 13 \, {\rm eV}$ выход ФЛ монотонно возрастает. Хотя спектр поглощения в этой области энергий неизвестен, с учетом результатов исследований спектров возбуждения ФЛ в XUVобласти, представленных в работе [12] (см. правую часть рис. 5), мы полагаем, что при $E_{\text{exc}} > 13 \,\text{eV}$ (более $2E_g$) наблюдается эффект размножения электронных возбуждений (РЭВ), который является атрибутом эффективного сцинтилляционного процесса. Для кристаллов LaBr₃ валентная зона, согласно расчетам [17], формируется преимущественно 4*p*-состояниями брома и имеет слабую дисперсию, а полная ширина валентной зоны E_v по данным рентгеновской фотоэлектронной спектроскопии и зонных расчетов [17] не превышает 4 eV. В кристаллах с узкой валентной зоной и большой эффективной массой дырок пороговая энергия эффекта РЭВ в соответствии с современными представлениями теории РЭВ [19] должна лежать как раз в области $(2-3)E_g$. Поскольку в LaBr₃ $E_v < E_g$, можно считать, что реализуется механизм РЭВ за счет генерации вторичных электронно-дырочных пар в результате неупругого рассеяния горячих фотоэлектронов.

Обратимся к результатам термоактивационной спектроскопии. Как следует из рис. 7, интенсивность РЛ Се³⁺-центров практически не зависит от температуры в интервале 90-450 К, в то время как свечение АЛЭ тушится при температурах выше 100 К. Эта температурная зависимость имеет две стадии. Энергия активации тушения РЛ, рассчитанная по известной формуле Мотта в температурной области 90-160 К (первая основная стадия тушения), составляет 84 meV. В то же время позиция основного пика 114К на кривой термовысвечивания соответствует области температурного тушения свечения АЛЭ. Оценка энергии активации ΔE для пика 114 К дает удивительно близкое значение: $\Delta E = 86 \,\mathrm{meV}$ (pacyet проведен по известному методу Лущика для бимолекулярного процесса). Спектральный состав этих пиков ТСЛ, как следует из рис. 7, соответствует Се³⁺-эмиссии. Отметим, что положение и спектральный состав основного пика 114 К хорошо соотносятся с данными ТСЛ, представленными в работе [20]: для LaBr₃: Се (5%) основной пик кривой термовысвечивания находится в области 120 К и его спектральный состав соответствует Се³⁺-эмиссии. Из этого следует, что, во-первых, при нагреве облученного кристалла рекомбинация электронов, освобождаемых с центров захвата (дефектов), происходит на цериевых центрах. Во-вторых, поскольку при тушении люминесценции АЛЭ нет увеличения выхода РЛ примесного свечения, не наблюдается экситонный механизм передачи энергии АЛЭ — Ce³⁺, а тушение люминесценции АЛЭ при нагреве связано с автоионизацией экситонов (образованием зонных электронов и дырок). Однако концентрация АЛЭ в исследуемых кристаллах LaBr₃: Ce, Hf, имеющих относительно высокую концентрацию дефектов кристаллической структуры, низка. Поэтому автоионизация АЛЭ при нагреве не приводит к заметному росту свечения Ce³⁺-центров.

На рис. 8 показан гамма-спектр, измеренный с применением сцинтилляционного блока, специально изготовленного для портативного спектрометра гаммаизлучения и состоящего из детектора на основе LaBr₃ : Ce, Hf (\emptyset 18 mm, h = 3 mm).и фотоэлектронного умножителя R6231. Спектр показывает хорошее энергетическое разрешение для основных гамма-линий и характеристического рентгеновского излучения в области 30-90 keV.

5. Заключение

Настоящее исследование выполнено с применением различных спектроскопических методов. Основные результаты могут быть кратко сформулированы следующим образом. В исследуемых кристаллах обнаружены Се³⁺-центры, расположенные в области дефектов кристаллической решетки. Такие центры имеют специфические спектрально-кинетические характеристики, отличающиеся от параметров Се³⁺-центров, расположенных в регулярных узлах. Помимо этого обнаружена ФЛ новых точечных дефектов, однако их природа пока не определена. На основе анализа спектров поглощения и возбуждения ФЛ мы определили значение минимальной энергии межзонных переходов в LaBr₃: $E_g \sim 6.2 \, \text{eV}$. Этот результат хорошо согласуется с данными зонных расчетов [17]. При энергиях $E_{\rm exc} > 13 \, {\rm eV}$ (более чем $2E_g$) проявляется эффект РЭВ за счет генерации вторичных электронно-дырочных пар в результате неупругого рассеяния горячих фотоэлектронов. На основе термоактивационных исследований показаны основные каналы переноса энергии электронных возбуждений к примесному центру.

В целом данные ФЛ-спектроскопии показывают, что кристаллы LaBr₃: Ce, Hf с пониженной гигроскопичностью имеют более высокую концентрацию дефектов кристаллической структуры, чем кристаллы LaBr₃: Ce. Однако это не приводит к заметному падению световыхода и изменению кинетики затухания люминесценции Ce³⁺-центров. Приведенные результаты показывают возможность успешного применения этих кристаллов в рентгеновской и гамма-спектрометрии.

Авторы признательны В.Ю. Иванову за поддержку работы, а также О.В. Игнатьеву за проведение спектрометрических измерений.

Список литературы

- E.V.D. van Loef, P. Dorenbos, C.W.E. van Ejik, K. Kramer, H.U. Gudel. Appl. Phys. Lett. **79**, 1573 (2001).
- [2] K.S. Shah, J. Glodo, W.W. Moses, S.E. Derenzo, M.J. Weber. Nucl. Instr. and Meth. A 505, 76 (2003).

- [3] http://www.detectors.saint-gobain.com/Brillance380.aspx
- [4] E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Gudel. Phys. Rev. B 68, 045 108 (2003).
- [5] P. Dorenbos, E.V.D. van Loef, A.P. Vink, E. van der Kolk, C.W.E. van Eijk, K.W. Kramer, H.U. Gudel, W.M. Higgins, K.S. Shah. J. Lumin. 117, 147 (2006).
- [6] G. Bizarri, P. Dorenbos. Phys. Rev. B 75, 184302 (2007).
- [7] J. Andriessen, E. van der Kolk, P. Dorenbos. Phys. Rev. B 76, 075 124 (2007).
- [8] I.V. Khodyuk, P. Dorenbos. J. Phys.: Condens. Matter 22, 485 402 (2010).
- [9] K.S. Shah, J. Glodo, M. Klugerman, W.W. Moses, S.E. Derenzo, M.J. Weber. IEEE Trans. Nucl. Sci. 50, 2410 (2003).
- [10] V.A. Pustovarov, V.Yu. Ivanov, D.I. Vyprintsev, N.G. Shvalev. DESY, HASYLAB Annual Rep. 20111 577 (2011).
- [11] В.А. Пустоваров, В.Ю. Иванов, Д.И. Выпринцев, Н.Г. Швалев. Письма в ЖТФ **38**, *17*, 15 (2012).
- [12] В.А. Пустоваров, А.Н. Разумов, В.Ю. Иванов, Д.И. Выпринцев, Н.Г. Швалев. Изв. РАН. Сер. физ. 77, 2, 242 (2013).
- [13] Д.И. Выпринцев. Патент РФ № 2426694. Приоритет от 15.02.2010.
- [14] H. Chen, C. Zhou, P. Yang, J. Wan. J. Mater. Sci. Technol. 25, 6, 753 (2009).
- [15] S.I. Omelkov, M.G. Brik, M. Kirm, V.A. Pustovarov, V. Kiisk, I. Sildos, S. Lange, S.I. Lobanov, L.I. Isaenko. J. Phys.: Cond. Matter 23, 10 550 (2011).
- [16] M. Kirm, J. Aarik, M. Jürgens, I. Sildos. Nucl. Instr. Meth. Phys. Res. A 537, 251 (2005).
- [17] D. Åberg, B. Sadigh, P. Erhart. Phys. Rev. B 85, 125134 (2012).
- [18] G.G. Olson, D.W. Lynch, M. Piacentini. Phys. Rev. B 18, 10, 5740 (1978).
- [19] A. Lushchik, E. Feldbach, R. Kink, Ch. Lushchik, M. Kirm, I. Martinson. Phys. Rev. B 53, 9, 5379 (1996).
- [20] O. Sellès, M. Fasoli, A. Vedda, M. Martini, D. Gourier. Phys. Status Solidi C 4, 3, 1004 (2007).