Особенности температурных зависимостей энергетических параметров межфазного взаимодействия в системах кристаллический кварц–Рb и (NaCl, KCl)–Pb

© В.Н. Юзевич¹, Б.П. Коман²

11

 ¹ Физико-механический институт им. Григория Карпенко НАН Украины, Львов, Украина
 ² Львовский национальный университет им. Ивана Франко, Львов, Украина
 E-mail: bogdan_28@mail.ru

(Поступила в Редакцию 15 мая 2013 г. В окончательной редакции 18 июля 2013 г.)

Исследованы температурные зависимости энергетических параметров — энергии межфазного взаимодействия, межфазного натяжения, работы адгезии и энергии адгезионных связей в системах кристаллический кварц (AT-cpe3)–Pb и (NaCl, KCl)–Pb при наличии структурного фазового перехода в подложке кварца ($\alpha \leftrightarrow \beta$) и фазового перехода в Pb типа твердая фаза–жидкая фаза. Анализируется влияние типа химической связи подложки на параметры межфазного взаимодействия.

1. Введение

Известно, что на начальной стадии конденсации металлов на твердотельную подложку важную роль в процессах зародышеобразования играет смачивание жидким металлом поверхности подложки. Соответствующий процесс, как известно, количественно характеризуется краевым углом смачивания [1] и определяется характером межмолекулярного взаимодействия в системе жидкий металл-подложка. Макроскопически задача о смачивании поверхности твердого тела жидкими металлами рассматривалась исследователями, как правило, в основном со "стороны" металла, в частности путем изменения примесного состава жидкой металлической капли и газовой среды [2,3]. Особенности смачивания в островковых металлических конденсатах, сформированных с пересыщенного пара на твердотельную подложку детально исследованы авторами монографии [4]. Факт влияния структурного состояния подложки на процессы растекания убедительно продемонстрировано в работах [5,6].

В настоящей работе, используя уравнения Пуассона и равновесия для элементов сплошной среды, условия минимума поверхностной и межфазной энергий, а также уравнения состояния, полученные методами неравновесной термодинамики, связывающие механические напряжения и плотности электрических зарядов (свободных для металлов, связанных для полупроводников или диэлектриков) при наличии соответстующих граничных условий (на поверхности твердое тело-инертная газовая среда, межфазной границе) [7–9], исследовано влияние свойств структуры подложки на величину и температурную зависимость межфазной энергии — γ_m , межфазного натяжения — σ_m , работы адгезии — A_{ad} и энергии адгезионных связей — γ_{ad} в системе металл-подложка.

2. Методика расчетов. Исходные данные

В качестве модельного объекта на первом этапе выбрана система Pb-кварц (АТ-срез). Спецификой исследуемой системы является существование в кварце фазового перехода при $t = 575^{\circ}$ С, что сопровождается его переходом из α - в β -модификацию. Такой переход происходит с изменением структуры поверхности (в частности с тригональной кристаллической системы (α) в гексагональную (β)), что при наличии смачивания поверхности приводит к изменению краевого угла смачивания и соответственно межфазного натяжения [5]. При наличии межмолекулярной связи в системе жидкий Pb-кварц следует ожидать резкого изменения в области фазового перехода также энергетических и адгезионных параметров, которые характеризуют межфазное взаимодействие.

Исходя из модели, в которой межфазный слой состоит из двух частей (металл (0; H)-подложка (0; -H)), межфазную энергию γ_m и межфазное натяжение σ_m на границе раздела Pb-подложка определим из соотношений [9]

$$\sigma_m = \int_{-H}^{H} \sigma_y dx; \quad \sigma_y = \sigma_z,$$

$$\gamma_m = \gamma_e + \xi_m \gamma_s; \quad \gamma_e = \int\limits_{-H}^{H} \omega_e dx; \quad \gamma_s = \int\limits_{-H}^{H} \omega_s dx.$$

Здесь x = 0 соответствует границе раздела; σ_y , σ_z — нормальные механические напряжения по отношению к плоскостям y, z соответственно (MPa); γ_e , γ_s — электрическая и механическая составляющие межфаз-

ной энергии (J/m^2) ; $\omega_e = \frac{\varepsilon_0}{2} \left(\frac{\partial \Psi}{\partial x}\right)^2$; $\omega_s = \frac{\sigma_x(\sigma_x - 4\nu\sigma_y)}{2E} + \frac{(1-\nu)\sigma_y^2}{E}$; ω_e , ω_s — удельные электрическая и механическая составляющие межфазной энергии; E, ν — модуль Юнга и коэффициент Пуассона материала межфазного слоя; Ψ — электростатический потенциал (потенциал электрического поля в межфазном слое); ξ_m — физическая характеристика межфазного слоя; 2H — его эффективная толщина.

Условие квазиравновесия межфазного слоя запишем в виде [9]:

$$\frac{\partial \gamma_m}{\partial k} = \frac{\partial (\gamma_e + \xi_m \gamma_s)}{\partial k} = 0, \quad k = \sqrt{\frac{\rho C_{\varphi}}{\varepsilon_0}},$$

где ρ — плотность материала; C_{φ} — удельная электроемкость; $\varepsilon_0 = 8.85 \cdot 10^{-12}$ F/m — электрическая постоянная; 1/k — численно равно расстоянию, при котором плотность электрического заряда (свободного для металла и связанного для диэлектрика и электролита) при отдалении от поверхности раздела уменьшается в *e* раз (*e* — основание натуральных логарифмов).

Работу адгезии A_{ad} и энергии адгезионных связей γ_{ad} определим на основе соотношений [9]

$$A_{\mathrm{ad}} = \sigma_h + \sigma_{dh} - \sigma_m, \quad \gamma_{\mathrm{ad}} = \gamma + \gamma_d - \gamma_m,$$

где σ_h , γ , σ_{dh} , γ_d — поверхностные натяжение и энергия кремния, контактирующего с воздухом.

Особенность данной задачи, в отличие от аналогичной в [9], состоит в том, что вследствие наличия фазового перехода ($\alpha \leftrightarrow \beta$) для ее решения использовались нетривиальные, но физически обоснованные в [5] (для двух областей) соотношения, которые представим как критериальные

1) $\langle T < 575^{\circ} C \rangle \sigma_m$ (системы Рb-кварц) $\Rightarrow 0.786$ N/m.

2) γ (кварц) \Rightarrow min; σ_h (кварц) \Rightarrow min, а также ограничительные соотношения для кварца

$$t > 575^{\circ}$$
C, $\gamma = [0.4 \div 1.416 \text{ J/m}^2]$.
 $\sigma_h = [0.546 \div 1 \text{ N/m}]$

и добавочное условие, полученное на основе обработки экспериментальных результатов [5,6]

$$\sigma_m > K_R \gamma$$
.

Здесь K_R — множитель для согласования размерностей ($K_R = 1 N \cdot m^2 / (m \cdot J)$) в соотношении Херинга [10]

$$\sigma_h = K_R \left(\gamma + \Omega \left(\frac{\partial \gamma}{\partial \Omega} \right)_T \right),$$

связывающем поверхностное натяжение σ_h и поверхностную энергию γ , Ω — площадь поверхности тела, $\left(\frac{\partial \gamma}{\partial \Omega}\right)_T$ — характеризует изменение поверхностной энергии в процессе деформации.

В справочной литературе отсутствуют однозначные величины физических констант в широком интервале

температур для элементов исследуемой системы, необходимые для расчетов по методике [9]: модуля Юнга, поверхностного натяжения кварца, свинца, а также их поверхностной энергии.

В связи с этим, для нахождения числовых значений необходимых параметров использовались результаты экспериментальных исследований, приведенные в периодической литературе, усредненные их значения из разных источников, а также, в случае необходимости, экстраполированные в исследуемом диапазоне температур. Основные этапы таких процедур приведены далее.

2.1. Физические параметры для Рb. Температурная зависимость поверхностного натяжения в пределах температур (327.4 ÷ 575°С) принимается согласно [11] в виде

$$\sigma_{dh} = \sigma_{Pb} = 0.4727 \pm 0.000085(t - t_0), \ t_0 = 560^{\circ} C.$$
 (1)

В жидкой фазе зависимость поверхностной энергии для Pb от температуры линейная в диапазоне температур (327.4–575°C) и принимает вид [12]

$$\gamma_d = \gamma_{\rm Pb} = 0.452 \pm 0.000085 \cdot (t - t_0), \ t_0 = 560^{\circ} \text{C}, \ (2)$$

а температурный коэффициент изменения равен [11]

$$\Delta \gamma_d / \Delta T = (\Delta \sigma_{dh} / \Delta T) / K_R = 0.000085 \,\mathrm{J} / (\mathrm{m}^2 \cdot \mathrm{K}). \quad (3)$$

Для твердой фазы в интервале температур (600.4–0 K) зависимость поверхностной энергии от температуры линейна [12] и соответствует уравнению

$$\gamma_d = \gamma_{\rm Pb} = 0.54 \pm 0.000117 \cdot (t - t_0), \ t_0 = 327.4^{\circ} \text{C}.$$
 (4)

Учитывая соотношение Херинга [10], получим аналогично температурный коэффициент изменения поверхностного натяжения

$$\Delta \sigma_{dh} / \Delta T = K_R \cdot \Delta \gamma_d / \Delta T = 0.000117 \,\mathrm{N} / (\mathrm{m} \cdot \mathrm{K}). \tag{5}$$

При фазовом переходе Pb (327.4°C — точка плавления) γ_d изменяется от 0.452 до 0.54 J/m², т.е. на величину 0.088 J/m². Тогда, согласно соотношению Херинга [10], изменение σ_{dh} принимается для свинца равным аналогичной величине.

2.2. Физические параметры для кварца. В литературе приведен очень широкий диапазон поверхностных натяжений $\sigma_h = 0.546 \div 1 \text{ N/m}$ [напр. 5,13], поэтому для расчетов принято среднее значение: $\sigma_h = 0.77 \text{ N/m}$. Температурный коэффициент изменения поверхностного натяжения для кварца согласно [5] в диапазоне температур (848–0 K) принимается линейным

$$\Delta \sigma_h / \Delta T = 0.000239 \,\mathrm{N} / (\mathrm{m} \cdot \mathrm{K}).$$

Аналогично, для поверхностной энергии в результате усреднений [14,15], принят диапазон изменений $\gamma = 0.4 \div 1.416 \, \text{J/m}^2$.

Учитывая пропорциональную зависимость между поверхностным натяжением σ_h и поверхностной энергией γ , принимаем для кварца в интервале температур (848 ÷ 0 K) температурный коэффициент изменения поверхностной энергии в виде

$$\Delta \gamma / \Delta T = 0.0000239 \,\mathrm{J} / (\mathrm{m}^2 \cdot \mathrm{K})$$

Для расчетов, кроме того, использовались следующие значения модуля Юнга, коэффициента Пуассона и числа атомов в единице объема [13,16]

$$E_{-} = 16$$
 GPa; $\nu_{-} = 0.44$; $q_{-} = 3.3 \cdot 10^{28} \, 1/\text{m}^3$ — (Pb);
(6)
 $E_{+} = 78$ GPa; $\nu_{+} = 0.17$; $q_{+} = 15 \cdot 10^{28} \, 1/\text{m}^3$ — (кварц).
(7)

3. Результаты расчетов и их обсуждение

На рис. 1 и 2 приведены температурные зависимости двух наиболее чувствительных параметров: энергии межфазного взаимодействия и межфазного натяжения в системе Pb-кварц, полученные в результате решения

Рис. 1. Температурная зависимость энергии межфазного взаимодействия в системе кристаллический кварц–Рb.

Рис. 2. Температурная зависимость межфазного натяжения в системе кристаллический кварц-Рb.

контактных задач сопряжения физико-механических полей на границе сред с помощью модели, изложенной в [9]. Как видно, в интервале температур (0-650°С) при общей тенденции линейного уменьшения γ_m с ростом температуры, на зависимости $\gamma_m(t)$ наблюдаются две ступеньки изменения межфазной энергии. В частности, первой (327°С) соответствует небольшое уменьшение у_m, обусловленное фазовым переходом твердая фаза (тв) (Pb)-жидкая фаза (ж) (Pb) при неизменном структурном состоянии кварцевой подложки. Второй соответствует более существенный "прыжок" исследуемого параметра и наблюдаемый при температуре фазового перехода ($\alpha \leftrightarrow \beta$) (575°C) в системе (Pb)кристаллический кварц. Последний переход, как известно, происходит за счет структурной перестройки атомов поверхности АТ-среза кристаллического кварца [5].

Как следует из рис. 1 и 2, наибольшие изменения межфазных параметров реализуются при температуре фазового перехода ($\alpha \leftrightarrow \beta$), равной 575°С. По чувствительности исследуемых параметров изменение межфазного натяжения превалирует над изменением межфазной энергии примерно на 40%. Кроме того, изменения исследуемых параметров в температурной точке 327°С (плавление свинца) имеют значительно меньшую величину, чем при структурном фазовом переходе ($\alpha \leftrightarrow \beta$). Таким образом, межфазное натяжение σ_m является наиболее чувствительным параметром межфазного взаимодействия по сравнению с другими энергетическими и адгезионными характеристиками γ_m , γ_{ad} , A_{ad} . Следует отметить, что температурные коэффициенты $\Delta \gamma_m / \Delta T$ на начальной (575 ÷ 327.4°С) и конечной (327.4 ÷ 20°С) стадиях отличаются несущественно (примерно на 30%). В то же время для межфазного натяжения температурная чувствительность является практически одинаковой для обоих участков.

С целью установления взаимной связи между исследуемыми параметрами рассчитан коэффициент корреляции. В частности,

$$K(\sigma_m, \gamma_m) = 0.992; \quad K(A_{ad}, \gamma_{ad}) = 0.798;$$

$$K(z_1, z_2) = K\left(\frac{\gamma_m}{\gamma_{ad}}, \frac{\sigma_m}{A_{ad}}\right) = 0.751;$$

$$K(\sigma_m, A_{ad}) = 0.860; K(\gamma_m, \gamma_{ad}) = 0.976.$$
 (8)

Т.е., значения $K(\sigma_m, \gamma_m)$, $K(\gamma_m, \gamma_{ad})$ свидетельствуют о том, что зависимости между парами параметров (σ_m, γ_m) , (γ_m, γ_{ad}) близкие к функциональным, в остальных трех случаях наблюдается хорошая корреляция.

В результате расчетов установлено, что энергии адгезионных связей и работы адгезии в исследованных системах обладают также значительной температурной чувствительностью и отображают фазовый переход в Рb характерной "ступенькой" изменения обоих параметров γ_{ad} , A_{ad} .

Приведенные результаты дают основания для утверждения о чувствительности параметров межфазного взаимодействия к структурным свойствам подложки или, в

N₂	Параметры	Система				
п/п	Параметры	Кварц–Рb	NaCl–Pb	KCl–Pb		
1	$\Delta \sigma_{mPb}$, N/m	0.03	0.15	0.11		
2	$\Delta \sigma_{m \kappa \text{варц}}, \text{N/m}$	0.33	—	—		
3	$\Delta \gamma_{mPb}$, J/m ²	0.05	0.09	0.18		
4	$\Delta \gamma_{m \text{кварц}}, \text{J/m}^2$	0.19	_	—		
5	$\Delta \sigma_m / \Delta T \Big _{\mathbf{p}_b}, \mathbf{N} / (\mathbf{m} \cdot \mathbf{K})$	$3.3\cdot10^{-4}$	$8\cdot 10^{-4}$	$2.3\cdot 10^{-4}$		
	$HT(327 \div 20)^{\circ}C$					
6	$\Delta \sigma_m / \Delta T \Big _{\rm Pb}, N / (m \cdot K)$	$3.1 \cdot 10^{-4}$	$8.3\cdot 10^{-4}$	$2.3\cdot 10^{-4}$		
	(BT)	(640-576)°C	(737–350)°C	(737–350)°C		
7	$\Delta \gamma_m / \Delta T \Big _{\rm ph}, J / (m^2 \cdot K)$	$2.3 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$1.6 \cdot 10^{-4}$		
	$(HT)(327 \div 20)^{\circ}C$					
8	$\Delta \gamma_m / \Delta T \Big _{\mathbf{p}_b}, \mathbf{J} / (\mathbf{m}^2 \cdot \mathbf{K})$	$8.3 \cdot 10^{-4}$	$5.2 \cdot 10^{-4}$	$1.3\cdot 10^{-4}$		
	(BT)		(737–350)°C	(737–350)°C		
9	$\sigma_m _{5850C}$, N/m	_	0.51	0.51		
10	$\gamma_m \Big _{5859}^{5859} C, J/m^2$	_	0.34	0.34		
11	$\sigma_m \Big _{\epsilon_{ADDC}}^{\delta b C}$, N/m	0.44	0.48	0.49		
12	$\gamma_m \Big _{640^{\circ}\mathrm{C}}^{640^{\circ}\mathrm{C}}, \mathrm{J/m^2}$	0.34	0.34	0.33		

Таблица 1.

Примечание. Характерные энергетические параметры межфазного взаимодействия в системах кристаллический кварц–Рb и (NaCl, KCl)–Pb ($\Delta \sigma_m$ и $\Delta \gamma_m$ — абсолютные изменения межфазного натяжения и межфазной энергии соответственно, в процессе фазового перехода (Pb соответствует фазовому переходу тв-ж, кварц — переходу типа $\alpha \leftrightarrow \beta$); $\Delta \sigma_m / \Delta t^\circ$, $\Delta \gamma_m / \Delta t^\circ$ — температурная чувствительность поверхностного натяжения и поверхностной энергии соответственно, $\sigma_m |_t$ и $\gamma_m |_t$ — значения межфазного натяжения и межфазной энергии при температуре t). (HT) и (BT) — обозначения низкотемпературного (20 ÷ 327°C) и высокотемпературного (327 ÷ 575°C) участков.

общем случае, одного из элементов взаимодействующей системы.

Эффективным структурным фактором, влияющим на величину межфазного взаимодействия является также не только кристаллическая структура, но и тип химической связи базового элемента (подложки). Аргументом в пользу такого утверждения являются результаты расчетов энергетических параметров для систем, обладающих существенно отличным от кристаллического кварца типом химической связи подложки.

На рис. З приведена температурная зависимость энергии межфазного взаимодействия в системах Pb–NaCl и

Рис. 3. Температурная зависимость энергии межфазного взаимодействия в системах: *1* — NaCl–Pb; *2* — KCl–Pb.

Рb-КСl. Подложки NaCl и КCl, как известно, обладают ионным типом химической связи, а в исследованном интервале температур им не свойственны структурные фазовые переходы. В качестве исходных параметров для расчетов использованы экспериментальные результаты работы [6]. Значения физических констант для NaCl, КСl взяты из [16], а для Pb рассчитаны с использованием соотношений, аналогичных (1)–(7). Для согласования с экспериментальными результатами [6], в настоящей работе учитывалась температурная зависимость модуля Юнга подложек NaCl, КСl согласно [17,18].

Прежде всего, в системах Pb–NaCl и Pb–KCl во всем исследованном интервале температур энергия межфазного взаимодействия принимает существенно отличное по сравнению с системой Pb-кварц значение, что обусловлено изменением типа и величины межмолекулярного взаимодействия в системе Pb-подложка. Кроме того, как и в случае для системы Pb-кварц, параметры γ_m и σ_m являются чувствительными к фазовому переходу Pb–Pb, и им соответствуют относительно небольшие "ступеньки" изменений энергетических характеристик межфазного слоя и параметров состояния при температуре плавления Pb (рис. 2).

Для сравнения и обсуждения конкретных особенностей межфазного взаимодействия в исследованных системах в табл. 1 приведены характерные параметры, следующие из температурных зависимостей параметров γ_m и σ_m .

Температурная чувствительность изменения межфазной энергии (20 ÷ 327°С) и в системе Pb–NaCl до точки

№ п/п	Типы контактирующих сред	Тип химической связи подложки	γ_m , J/m ²	$\sigma_m, \ { m N/m}$	A _{ad} , N/m	$\gamma_{\rm ad}$, J/m ²	Z_1	Z_2		
1	Ni-Pb	металлический	0.15	0.23	3.06	2.88	0.05	0.08		
2	Co–Pb	»	0.14	0.22	2.98	2.90	0.08	0.07		
3	Ge–Pb	ковалентный	0.43	0.52	1.21	1.6	0.33	0.43		
4	Si–Pb	»	0.91	1.32	0.63	0.846	1.08	2.08		
5	α -кварц–Рb(AT-срез)	ковалентно-ионный	0.49	0.86	1.14	1.35	0.69	0.64		
6	NaCl–Pb	ионный	1.12	0.78	0.21	0.16	4.88	3.71		
7	KCl–Pb	»	0.51	0.75	0.06	0.25	3	12.5		

Таблица 2.

Примечание. Сравнение энергетических параметров межфазного взаимодействия по типу химической связи подложки ($t = 20^{\circ}$ C) (γ_m — межфазная энергия, σ_m — межфазное натяжение, A_{ad} — работа адгезии, γ_{ad} — энергия адгезионных связей, $Z_1 = \gamma_m / \gamma_{ad}$, $Z_2 = \sigma_m / A_{ad}$ — безразмерные параметры).

фазового перехода Pb почти в 3 раза превышает аналогичное значение для системы Pb-кварц. После фазового перехода тв Pb-ж Pb при увеличении температуры коэффициент $\Delta \gamma_m / \Delta T$ несколько уменьшается (табл 2). Таким образом, в твердотельной системе тв Pb-тв NaCl данный коэффициент температурной чувствительности приблизительно в 1.6 раза больше, чем в ж Pb-тв NaCl. Обращает на себя внимание низкая температурная чувствительность параметров γ_m и σ_m в системе кварц–Pb, по сравнению с NaCl–Pb. Еще меньшим температурным изменениям подвержена межфазная энергия в системе KCl–Pb, а коэффициенты $\Delta \gamma_m / \Delta T$ являются близкими для низкотемпературных (HT) и высокотемпературных (BT) участков.

Интересные результаты обнаруживает температурная зависимость межфазного натяжения. В частности, для Pb–NaCl межфазное натяжение обладает большей температурной чувствительностью, чем в системе Pb–кварц, и $\Delta\sigma_m/\Delta T$ является одинаковым для HT- и BT-участков температурной зависимости. В Pb–КCl этот коэффициент $\Delta\sigma_m/\Delta T$ одинаковый для HT- и BT-участков (T), однако по величине значительно меньше, чем в предыдущих системах.

Рис. 4. Температурная зависимость межфазного натяжения в системах: *I* — NaCl–Pb; *2* — KCl–Pb.

Как видно, в системе Pb–KCl влияние подложки на межфазное взаимодействие очевидно менее значительно, чем для кварц–Pb, но сравнимо по величине с аналогичными значениями в системе Pb–NaCl. Вследствие этого величина "прыжка" σ_m при фазовом переходе Pb превалирует над аналогичным в системе кварц–Pb почти в 4 раза (0.03 и 0.11 N/m), а γ_m — в 3.5 раза (0.05 и 0.18 N/m).

Примечательно, что в меру увеличения температуры после фазового перехода (ВТ-область) различия в численных значениях параметров γ_m и σ_m для разных систем (кварц–Рb, Pb–NaCl и Pb–KCl) сводятся к минимуму и, к примеру, для фиксированной температуры (640°C) принимают близкие (σ_m) или одинаковые (γ_m) значения (табл. 1). Важной особенностью является факт наличия температурной точки 585°C, в которой значения γ_m и σ_m для обеих систем Pb–NaCl и Pb–KCl принимают соответственно одинаковые значения, то есть не зависят от типа подложки (рис. 3 и 4).

Таким образом, эффективным фактором, влияющим на энергетические параметры межфазного взаимодействия является не только кристаллическая структура, но и тип химической связи базового элемента (подложки). Такой вывод подтверждается сравнительными результатами расчетов энергетических параметров для систем, обладающих альтернативными типами химической связи подложки (табл. 2). Однако параметрами, селективно чувствительными к такому виду изменений в электронной структуре, являются только работа адгезии и энергия адгезионных связей.

Как видно, для ковалентных систем данные энергетические параметры A_{ad} , γ_{ad} значительно превышают аналогичные для ионных с относительным их различием в 3–10 раз. В то же время другие параметры межфазного взаимодействия — межфазная энергия и межфазное натяжение в пределах каждой группы могут существенно отличаться в силу их большой чувствительности к фазово-химическому состоянию поверхности.

Таким образом, в ряду анализируемых систем наибольшее значение данные параметры σ_m , γ_m , A_{ad} , γ_{ad} принимают в системах с подложкой, обладающих металлическим типом связи. Далее следуют ковалентные системы, для которых эти параметры меньше, более чем в два раза. Ионные системы характеризуются наименьшим значением работы адгезии, а также энергии адгезионных связей и приобретают значения в 6–8 раз меньше, чем для предыдущих ковалентных систем.

4. Выводы

1. На основе термодинамического подхода и основных соотношений физики поверхности с использованием экспериментальных результатов рассчитаны энергетические параметры межфазного взаимодействия: энергия межфазного взаимодействия, межфазное натяжение, работа адгезии и энергия адгезионных связей в системах кристаллический кварц (АТ-срез)–Рb и (NaCl, KCl)–Pb. Получены конкретные числовые значения этих параметров в широком температурном диапазоне.

2. Исследованы температурные зависимости энергетических параметров межфазного взаимодействия при учете структурного фазового перехода в подложке кварца ($\alpha \leftrightarrow \beta$) и фазового перехода в Рb типа тв-ж. Проведено сравнение температурной чувствительности этих параметров для различных подложек (кристаллический кварц (AT-срез), монокристаллы NaCl и KCl).

3. Установлено, что структурный фазовый переход в кристаллическом кварце ($\alpha \leftrightarrow \beta$) при температуре перехода 575°С сопровождается "прыжком" всех исследованных параметров межфазного взаимодействия. В силу такой чувствительности энергетических и адгезионных параметров предложенная и апробированная на примерах результатов данной работы методика может быть использована для прогнозирования возможных структурных изменений поверхности твердых тел и фазовых переходов.

4. Установлено, что фазовый переход тв Pb-ж Pb при температуре плавления свинца 327.5°C независимо от типа подложки также сопровождается "прыжком" всех параметров межфазного взаимодействия, величина которых, однако, меньше, чем в случае структурного фазового перехода типа $\alpha \leftrightarrow \beta$ в системе кристаллический кварц–Pb.

5. Для систем NaCl–Pb и KCl–Pb установлено наличие температурной точки (585°C), при которой значения параметров γ_m и σ_m , соответственно, принимают одина-ковые численные значения.

6. На основании сравнений энергетических параметров в системах Ni–Pb, Ge–Pb, Si–Pb (с этой целью использована информация, изложенная в работе [9]), кристаллический кварц–Pb, NaCl–Pb и KCl–Pb установлено селективное влияние типа химической связи базовой подложки на работу адгезии и энергию адгезионных связей, которые являются важными характеристиками межфазного взаимодействия. В частности, показано, что наибольшее значение работа адгезии и энергия адгезионных связей приобретают в системах с подложками, обладающими металлическим типом химической связи.

Список литературы

- [1] Б.Д. Сумм. Физико-химические основы смачивания и растекания. Химия, М. (1976). 486 с.
- [2] В.И. Ниженко, Л.И. Флока. Поверхностное натяжение металлов и сплавов. Металлургия, М. (1981). 421 с.
- [3] М.П. Смирнов. Рафинирование свинца и переработка полупродуктов. Металлургия, М. (1977). 280 с.
- [4] Г.Т. Гладких, С.Г. Дукаров, А.П. Крышталь, В.И. Ларин, В.Н. Сухов, С.И. Богатыренко. Поверхностные явления и фазовые превращения в конденсированных пленках. XHУ, Харьков (2004). 276 с.
- [5] А.Х. Дышекова, А.М. Кармоков. Письма в ЖТФ. **37**, *1* (2011).
- [6] А.Х. Дышекова, А.М. Кармоков, О.А. Молоканов, Б.Н. Нагоев. Конденсированные среды и межфазные границы. 14, 29 (2012).
- [7] С. де Гроот, П. Мазур. Неравновесная термодинамика. Пер. с англ. Мир, М. (1964), 456 с.
- [8] N. Eustathopoulus J.-C, Joud. Current Topics Mater. Sci. 4, 281 (1980).
- [9] Б.П. Коман, В.Н. Юзевич. ФТТ 54, 1335 (2012).
- [10] C. Herring. Surface Tension as a Motivation for Sintering. In: Physics of Powder Metallurgy / Ed. W.E. Kingston. McGraw-Hill, N.Y. (1951). P. 568.
- [11] D.W.G. White. Metallurgical and Materials Transactions B 2, 3067 (1971).
- [12] C. Bombis, A. Emundts, M. Nowicki. Surf. Sci. 511, 83 (2002).
- [13] С.А. Кукушкин, А.В. Осипов, М.Г. Шлягин. ЖТФ 76, 74 (2006).
- [14] W.F. Brace, J.B. Walsh. Am. Mineralogist 47, 1111 (1962).
- [15] Parks, A. George. J. Geophys. Res. 89, 3997 (1984).
- [16] Таблицы физических величин. Справочник. Атомиздат, М. (1976). 1006 с.
- [17] Э.Г. Соболева. Автореф. канд. дис. ЮТИ, Юрга (2010). 21 с.
- [18] Дж. Гилман. УФН 53, 3455 (1963).