10,03

Влияние давления на фононные спектры и упругие свойства орторомбического GeSe

© Ф.М. Гашимзаде¹, Д.А. Гусейнова¹, З.А. Джахангирли^{1,2}, Б.Г. Мехтиев¹, Г.С. Оруджев^{1,2}

¹ Институт физики НАН Азербайджана, Баку, Азербайджан ² Азербайджанский технический университет, Баку, Азербайджан E-mail: cahanzakir@yahoo.com

(Поступила в Редакцию 2 августа 2013 г.

В окончательной редакции 3 октября 2013 г.)

Методом функционала плотности с использованием пакета программ ABINIT рассчитаны барические зависимости фононных частот центра зоны Бриллюэна, а также упругих постоянных для соединения GeSe. Проведено сравнение с имеющимися в литературе результатами теоретических расчетов и измерений зависимостей частот комбинационного рассеяния от давления. Расчеты показывают, что при давлении около 29 GPa происходит непрерывный фазовый переход от простой к орторомбической базоцентрированной решетке.

1. Введение

Современная микроэлектроника основана на использовании тонких пленок, выращенных на различных подложках. При этом несовпадение постоянных решетки приводит к сжатию или растяжению в пленках. Кроме того, из-за разницы коэффициентов теплового расширения подложки и пленки появляются двухосное и гидростатическое напряжения. Под действием приложенного давления структурные параметры решетки и электронные свойства кристаллов существенно изменяются, и это следует учитывать при разработке различных устройств. Таким образом, исследование влияния давления на структурные, упругие и электронные параметры соединений представляет практический интерес.

Ранее расчеты зависимости некоторых фононных частот соединения GeSe от гидростатического давления были проведены в [1,2]. Авторы указанных работ провели также экспериментальные исследования зависимостей структурных параметров и одной низкочастотной КР-активной (КР — комбинационное рассеяние) сдвиговой моды Ag в GeSe от давления. В результате исследований авторы пришли к выводу, что метод функционала плотности не только адекватно описывает равновесные структурные и колебательные свойства сильно анизотропного соединения GeSe, но и эффективно предсказывает детали индуцированных давлением изменений элементарной ячейки и положений атомов. Однако в этих работах теоретический расчет барической зависимости сдвиговой моды Ag был проведен в приближении жесткого слоя. Результаты расчетов показывают, что данное приближение плохо описывает зависимость межслоевых мод от давления.

Влияние гидростатического давления на спектры КР соединения GeSe исследовано и в экспериментальной работе [3]. Барическая зависимость спектров КР GeSe

была изучена до давления 7 kbar. Обнаружено большое различие барических коэффициентов для низкочастотных межслоевых колебаний и внутрислоевых мод решеточных колебаний.

Таким образом, исследование изменений частот внутри- и межслоевых колебательных мод в зависимости от давления требует более детального изучения. В настоящей работе проведены более подробные расчеты влияния гидростатического давления на инфракрасные (ИК) и КР-активные фононы GeSe, включая и расчет компонент тензора упругих модулей.

Кристаллическая структура и метод расчета

Как известно, четыре соединения группы A^4B^6 (GeS, GeSe, SnS, SnSe) обладают орторомбической структурой кристаллической решетки, близко связанной со структурой черного фосфора. При атмосферном давлении кристаллическая структура слоистая. Пространственная группа симметрии $P_{nma}(D_{2h}^{16})$ [4]. Все атомы находятся в позиции (4c); координаты атомов (в долях параметров элементарной ячейки) задаются следующим образом: $\pm(x; 1/4, z)$ и $\pm(1/2 - x, 3/4, 1/2 + z)$, где x и z — позиционные параметры катионов и анионов.

Элементарная ячейка кристалла содержит восемь атомов, расположенных в двух слоях, состоящих каждый из четырех атомных плоскостей в последовательности катион-анион-катион.

В настоящей работе расчеты проводились из первых принципов на основе теории функционала плотности (DFT) с использованием метода псевдопотенциала на базисе плоских волн, реализованного в пакете программ ABINIT [5].

В наших расчетах обменно-корреляционное взаимодействие описывалось в приближении локальной плот-

Структурные параметры GeSe при нулевом давлении и температуре

	a,Å	b, Å	$c, \mathrm{\AA}$	x_A	ZA	x_B	ZΒ	Лит. ссылка
Теория	4.305	3.76	10.568	0.1109	0.1173	0.4942	0.8550	Наст. раб.
Эксперимент	4.388 4.38 4.381	3.833 3.82 3.834	10.825 10.79 10.847	0.1115 0.106 0.110	0.1211 0.121 0.124	0.502 0.503 0.504	0.8534 0.852 0.844	[4] [9] [2]

Рис. 1. Зависимости нормированных параметров решетки GeSe от гидростатического давления. Темные символы соответствуют расчетным значениям, светлые символы — экспериментальным данным, заимствованным из работы [1]. Сплошные линии соответствуют наилучшей подгонке расчетных данных.

ности (LDA) по схеме [6]. В качестве псевдопотенциалов использовались сохраняющие нормы псевдопотенциалы Хартвигсена-Гоэдеккера-Хаттера [7]. В разложении волновой функции были учтены плоские волны с максимальной кинетической энергией до 80 Ry, которые обеспечивают хорошую сходимость полной энергии. Интегрирование по зоне Бриллюэна осуществлено с помощью разбиения 4 × 4 × 4 со сдвигом от начала координат согласно схеме Монкхорста-Пака [8]. Параметры решетки и равновесные положения атомов в элементарной ячейке находились из условия минимизации сил Геллмана-Фейнмана, действующих на атомы. Процесс минимизации осуществлялся до тех пор, пока модули сил не оказывались меньше 10⁻⁸ Ry/Bohr. Затем с использованием программы ANADDB из пакета АВІNІТ [5] путем Фурье-преобразования были определены межатомные силовые постоянные в конфигурационном пространстве. Полученные таким образом силовые константы были затем использованы для вычисления фононных мод в произвольных точках зоны Бриллюэна.

Теоретико-групповой анализ предсказывает наличие двенадцати КР-активных мод и семи ИК-активных мод. В КР-спектрах активность проявляют моды A_g , B_{1g} , B_{2g} и B_{3g} , тогда как в ИК-спектрах проявляются моды с симметрией B_{1u} , B_{2u} , B_{3u} . Мода A_u не активна в однофононных ИК- и КР-спектрах.

Для корректного расчета колебательных спектров кристаллов необходимо исходить из равновесных значений постоянной решетки и координат атомов в ней, и поэтому нужно выполнить оптимизацию структурных параметров.

Полученные теоретические значения структурных параметров для GeSe при нулевом давлении и температуре приведены в таблице. С учетом того, что обычно использование приближения LDA приводит к небольшому занижению параметров решетки, оптимизированные и экспериментальные значения параметров решетки хорошо согласуются друг с другом. Эта же процедура повторялась для каждого заданного значения давления.

Рис. 2. Зависимости структурных параметров от давления. На вставке показана зависимость электрического сопротивления GeSe от давления [10].

Рис. 3. Зависимости фононных частот центра зоны Бриллюэна от давления.

Полученные результаты приведены на рис. 1 и 2. Для сравнения на этих рисунках показаны экспериментальные результаты [1].

На рис. 3 представлены зависимости фононных частот центра зоны Бриллюэна от давления. К сожалению, экспериментальные барические зависимости фононных частот известны только для моды A_g . Сопоставление с ней приведено на рис. 4. На рис. 5 показаны барические зависимости упругих модулей кристалла GeSe. Экспериментальные данные по упругим постоянным GeSe в литературе, насколько нам известно, отсутствуют.

3. Обсуждение результатов

Из рис. 4 видно, что теоретическая зависимость частоты фононной моды A_g довольно хорошо согласуется с экспериментальной. При этом следует учесть, что наши результаты относятся к нулевой температуре и, следовательно, частоты несколько выше, чем экспериментально измеренные при комнатной температуре. Кроме того, мы сопоставили барические коэффициенты для нескольких мод, экспериментально исследованных в [3] при низких давлениях. Для низкочастотной A_g-моды с частотой 39 cm⁻¹ получено хорошее согласие: экспериментальное значение равно 7, а теоретическое равно 6.5. Для моды A_g с частотой 174 сm⁻¹ экспериментальное значение равно 2.9, а теоретическое равно 2. Хуже обстоит дело с модами A_g с частотой $188\,\mathrm{cm}^{-1}$ и с модой B_{3g} с частотой 151 сm⁻¹. Здесь в противоположность характеру экспериментальной зависимости наблюдается убывание частоты с давлением. В настоящее время мы не можем объяснить такое различие. На рис. 6 показана зависимость объема элементарной ячейки кристалла от гидростатического давления. В работе для расчета упругих постоянных был использован метод DFPT (density functional perturbation theory), который позволяет определить вторые производные полной энергии по отношению к деформации и таким образом позволяет непосредственно рассчитать упругие постоянные. Орторомбические кристаллы характеризуются девятью независимыми упругими постоянными. С другой стороны, мы сравнили значения диагональных компонент

Рис. 4. Зависимость сдвиговой фононной моды *A_g* от гидростатического давления.

Рис. 5. Зависимости упругих постоянных от давления.

Рис. 6. Зависимость объема элементарной ячейки кристалла GeSe от давления.

тензора упругих модулей с рассчитанными по наклону акустических ветвей скоростями продольных и поперечных звуковых волн и нашли, что они согласуются с максимальным отклонением 4%. Из рис. 1 видно, что зависимость относительного сжатия от давления для направления, перпендикулярного слоям, оказывается более слабой, чем ожидалось. На это обстоятельство впервые обратили внимание авторы [1]. Именно это обстоятельство привело авторов к заключению, что слоистость в кристалле GeSe слабо выражена. Рассчитанные модули Юнга для каждого кристаллографического направления показывают, что действительно сжимаемость в направлении оси с, перпендикулярном слоям, меньше, чем в направлении вдоль кристаллографической оси а, хотя и больше, чем в направлении кристаллографической оси b. Такая же аномалия наблюдается и для скоростей продольного звука в этих направлениях. Скорость звука в направлении, перпендикулярном слоям, оказывается выше, чем в направлении оси а вдоль слоя: $v_a = 2733 \text{ m/s}, v_c = 3752 \text{ m/s}, v_b = 4141 \text{ m/s}.$

Расчеты показывают, что при давлении около 29 GPa происходит фазовый переход от простой орторомбической к базоцентрированной орторомбической структуре. По-видимому, именно этим фазовым переходом обусловлен скачок электросопротивления, наблюдавшийся при 250 kbar в эксперименте [10]. Рис. 2 показывает изменение внутренних параметров x(Ge) и x(Se) с изменением давления. Резкое изменение x(Ge) и x(Se) около 29 GPa коррелирует с резким падением сопротивления при 250 kbar (см. вставку на рис. 2). Разница в давлении связана с тем, что проведенные расчеты относятся к нулевой температуре, а эксперименты проводились при комнатной температуре. Повышение температуры, естественно, увеличивает сжимаемость, что приводит к фазовому переходу при несколько более низких давлениях.

4. Заключение

В настоящей работе на основе расчетов из первых принципов в рамках теории функционала плотности исследован колебательный спектр GeSe под давлением и проведено сравнение с результатами экспериментальных [1-3] и теоретических работ [1,2]. Обнаружено, что частоты некоторых фононных мод уменьшаются с увеличением давления. Полученные результаты могут быть использованы для интерпретации ИК-спектров. Также исследованы зависимости упругих свойств и скоростей продольного и поперечного звука в GeSe от давления. Наши расчеты предсказывают возможность фазового перехода около 29 GPa из орторомбической фазы $P_{nma}(D_{2h}^{16})$ в фазу $C_{mcm}(D_{2h}^{17})$. В последней все атомы находятся в позиции (4c) с координатами $\pm (0, 1/4, z)$. Высказано предположение, что ранее наблюдавшийся в эксперименте скачок проводимости GeSe при давлении 25 GPa связан именно с этим фазовым переходом.

Список литературы

- H.C. Hsueh, H. Vass, S.J. Clark, G.J. Ackland, J. Crain. Phys. Rev. B 51, 16750 (1995).
- [2] H.C. Hsueh, J. Crain. Phys. Status. Solidi B 211, 365 (1999).
- [3] H.R. Chandrasekhar, R.G. Humphreys, M. Cardona. Phys. Rev. B 16, 2981 (1977).
- [4] H. Wiedemeier, H.G. Schnering. Z. Krist. 148, 295 (1978).
- [5] X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jallet. Comput. Mater. Sci. 25, 478 (2002).
- [6] S. Goedecker, M. Teter, J. Hutter. Phys. Rev. B 54, 1703 (1996).
- [7] C. Hartwigsen, S. Goedecker, J. Hutter. Phys. Rev. B 58, 3641 (1998).
- [8] H. Monkhorst, J. Pack. Phys. Rev. B 13, 5188 (1976).
- [9] J. Okazaki. Phys. Soc. Jpn. 13, 1151 (1958).
- [10] A. Onodera, I. Sakamoto, Y. Fujii, N. Mori, S. Sugai. Phys. Rev. B 56, 7935 (1997).