Скейлинг магнитосопротивления углеродных наноматериалов в области прыжковой проводимости моттовского типа

© С.В. Демишев, А.Д. Божко, В.В. Глушков, Е.А. Катаева, А.Г. Ляпин*, Е.Д. Образцова, Т.В. Ищенко, Н.А. Самарин, Н.Е. Случанко

Институт общей физики им. А.М. Прохорова Российской академии наук,

119991 Москва, Россия

* Институт физики высоких давлений Российской академии наук,

142190 Троицк, Московская обл., Россия

E-mail: demis@lt.gpi.ru

(Поступила в Редакцию 22 ноября 2007 г.)

Предложена методика анализа данных прыжковой проводимости моттовского типа в магнитном поле $\rho \sim \exp[(T_0/T)^{\alpha}]$, основанная на выполнении скейлингового соотношения $\ln[\rho(H)/\rho(0)] = (T_0/T)^{\alpha}F(H/T)$ для спин-поляризационного вклада в магнитосопротивление. Этот общий подход был проверен для углеродного наноматериала, синтезированного из одностеночных углеродных нанотрубок при высоком (до 7 GPa) давлении. Эксперименты подтвердили теоретические результаты в диапазоне температур 1.8-12 К в магнитном поле до 70 kOe и позволили корректно определить все параметры локализованных состояний, фигурирующие в модели. На примере углеродных наноматериалов, синтезированных на основе одностеночных углеродных нанотрубок и смеси фуллеренов C_{2N} , получены экспериментальные указания на возможный эффект перенормировки магнитного момента электронов, участвующих в прыжковом транспорте.

Работа выполнена в рамках проекта 2.8 Программы фундаментальных исследований президиума РАН "Влияние атомно-кристаллической и электронной структуры на свойства конденсированных сред" при поддержке РФФИ (гранты № 04-02-1608 и 05-02-165969) и Программы Президиума РАН по веществу в экстремальных условиях.

PACS: 72.80.Rj, 72.20.Ee, 72.15.Gd, 72.25.Dc

1. Введение

Во многих случаях углеродные наноматериалы, т.е. материалы, структура которых характеризуется естественными или искусственными наноразмерными неоднородностями, обладают прыжковой проводимостью. В теории режим прыжковой проводимости является следствием формирования эффективной сетки сопротивлений Миллера—Абрахамса, которая в явном виде не зависит от структурных особенностей образца. Поэтому анализ данных прыжковой проводимости может быть использован для получения независимой информации об электронных состояниях и структуре образцов, например о радиусе локализации [1–3].

Обычно предполагается, что в режиме прыжковой проводимости с переменной длиной прыжка, когда удельное сопротивление зависит от температуры по закону

$$\rho(T) = \rho_0 \exp[(T_0/T)^{\alpha}], \qquad (1)$$

положительная часть магнитосопротивления связана со сжатием волновой функции локализованного состояния в магнитном поле [1,4,5]. В пределе слабых магнитных полей ($a < l_H$) эффект сжатия задается выражением

$$\ln[\rho(H)/\rho(0)] = t_d \left(\frac{a}{l_H}\right)^4 \left(\frac{T_0}{T}\right)^{3\alpha},\tag{2}$$

где a — радиус локализации, $l_H = \sqrt{\hbar c / eH}$ — магнитная длина, а t_d — численный коэффициент [1,4]. Во многих

случаях в углеродных наноматериалах дальнодействующие кулоновские корреляции малы [6]; тогда показатель степени α и характерная температура T_0 могут быть предствлены в виде

$$\alpha = \frac{1}{d+1},\tag{3}$$

$$T_0 = \frac{\eta_c}{g(E_{\rm F})a^d k_{\rm B}}.$$
(4)

Здесь d — размерность пространства, в котором происходят прыжки, а $g(E_{\rm F})$ — плотность состояний в пространстве соответствующей размерности. Численные коэффициенты η_c и t_d известны и в случае d = 3равны 17.6 и 5/2016 соответственно [1,2]. Так как параметры T_0 и α в выражении (1) могут быть определены из анализа проводимости на постоянном токе, формула (2) позволяет находить радиус локализации из измерений магнитосопротивления. Далее по формуле (4) можно вычислить плотность локализованных состояний, а также судить об эффективной транспортной размерности (см. (3)), которая определяется особенностями морфологии образца.

К сожалению, рассматриваемая процедура "моттовской спектроскопии" локализованных состояний в общем случае неудовлетворительно описывает экспериментальные данные и приводит к температурным зависимостям радиуса локализации, лишенным физического смысла [6]. Кроме того, ситуация часто осложняется необходимостью учета отрицательного вклада в магнитосопротивление, обусловленного интерференционными эффектами [5]. В результате практическая реализация такого подхода сопряжена со значительными трудностями.

Целью настоящей работы является разработка корректного алгоритма анализа положительного магнитосопротивления в режиме прыжковой проводимости с переменной длиной прыжка и его экспериментальная проверка на примере различных углеродных наноматериалов.

Алгоритм анализа положительного магнитосопротивления

Недавно было показано, что для корректного описания положительного вклада в магнитосопротивление требуется помимо эффекта сжатия волновой функции учитывать спин-зависимый транспорт [6,7]. Это означает, что эффективная сетка Миллера-Абрахамса в общем случае образуется как однократно (D^0) , так и двукратно (D⁻) занятыми состояниями. Так как двукратное заполнение центра требует противоположной ориентации спинов, а магнитное поле стремится ориентировать спины в одинаковом направлении, наличие D⁻-центров приводит к появлению дополнительного вклада в магнитосопротивление. Для описания этого эффекта были предложены две модели. Первая из них основана на учете зеемановского расщепления энергетической полосы в окрестности уровня Ферми, где возникает прыжковая проводимость [8,9]. Однако это приближение дает некорректную полевую и температурную зависимости магнитосопротивления в слабых магнитных полях [6]. Вторая модель предполагает, что вероятность прыжков с участием *D*⁻-состояний определяется степенью поляризации спиновой части волновой функции в магнитном поле [6]. Детальный сравнительный анализ этих двух теоретических подходов является предметом отдельного сообщения, и в настоящей работе мы рассмотрим только вклад от спин-поляризационного механизма, поскольку учета именно этого вклада достаточно для количественного анализа данных магнитосопротивления в режиме прыжковой проводимости с переменной длиной прыжка в пределе слабых магнитных полей [6].

Существенно, что характерной чертой спинзависимого магнитосопротивления является скейлинговое соотношение вида [6,9]

$$\ln\left[\frac{\rho(H)}{\rho(0)}\right] = \left(\frac{T_0}{T}\right)^{\alpha} F(x), \tag{5}$$

где T_0 и α те же, что и в формуле (1), F(x) — скейлинговая функция, а x(H, T) — параметр скейлинга, различающийся в разных моделях. Отметим, что для спинзависимого магнитосопротивления формула (5) справедлива при произвольных значениях магнитного поля. Для рассматриваемого нами спин-поляризационного механизма $x = \mu H / k_{\rm B} T$ и скейлинговая функция была найдена в [6]

$$F(x) = (1 - A \tanh^2(x))^{-\alpha} - 1,$$
 (6)

где $A = (g_2 a_2^d - g_1 a_1^d)/(g_2 a_2^d + g_1 a_1^d)$. Здесь и далее μ эффективный магнитный момент электрона, а иденксы 1 и 2 у плотности состояний на уровне Ферми g и радиуса локализации a обозначают параметры D^0 - и D^- -состояний соответственно. При этом величина T_0 в формулах (1) и (5) задается выражением $T_0 = 2\eta_c/(g_2 a_2^d + g_1 a_1^d)k_{\rm B}$ [6].

Приведем теперь экспериментальные аргументы, свидетельствующие о справедливости скейлингового подхода в рамках спин-поляризационной модели. В качестве примера рассмотрим опубликованные ранее в работе [7] данные по магнитосопротивлению углеродного наноматериала, синтезированного в условиях высокого давления из смеси фуллеренов C_{2N}. На рис. 1 приведены полевые зависимости магнитосопротивления при раличных температурах для образца с прыжковой проводимостью моттовского типа с $\alpha = 1/4$ и $T_0 = 33666 \,\mathrm{K}$. Хорошо видно, что имеет место заметное отклонение от асимптотики слабого магнитного поля $\ln[\rho(H)/\rho(0)] \sim H^2$ уже в области $H^2 \ge 700-900 \,\mathrm{kOe^2}$ $(H \ge 26 - 30 \, \text{kOe})$. Представление данных рис. 1 в координатах $(T/T_0)^{1/4} \ln[\rho(H)/\rho(0)] = f(H/T)$ показывает, что в рассматриваемом случае выполняется скейлинговое соотношение, ожидаемое для спинполяризационного магнитосопротивления (рис. 2). Кроме того, формула (6) позволяет хорошо описать экспериментальные данные (сплошная линия на рис. 2), и двухпараметрическая подгонка дает $\mu = (0.82 \pm 0.01) \, \mu_{\rm B}$ и $A = (9.09 \pm 0.03) \cdot 10^{-2}$. Значение последнего параметра согласуется с величинами А, определенными ранее для других углеродных наноматериалов [6].

Рис. 1. Температурная зависимость удельного сопротивления и полевые зависимости магнитосопротивления в области прыжковой проводимости для образца углеродного наноматериала, полученного из смеси фуллеренов C_{2N} (по работе [7]).

Рис. 2. Скейлинг магнитосопротивления углеродного наноматериала, полученного из смеси фуллеренов C_{2N}. Сплошная линия — расчет по формуле (6).

Несколько неожиданным оказывается найденная из расчета величина магнитного момента электрона, которая хотя и близка к магнетону Бора, но все же оказывается несколько меньше ожидаемого "из общих соображений" для немагнитной системы значения $\mu = \mu_{\rm B}$.

Из проведенного анализа следует, что для образца C_{2N} спин-поляризационный вклад в магнитосопротивление доминирует, а вклад, обусловленный сжатием волновой функции, в исследованной области параметров пренебрежимо мал. Если потребовать, чтобы для всех значений температуры и магнитного поля амплитуда магнитосопротивления, возникающая в результате эффекта сжатия, не превышала бы 0.01 от экспериментально наблюдаемой величины, то это дает оценку сверху для радиусов локализации: $a_1, a_2 \leq 10$ Å. Отметим, что с представлением о сильной степени локализации волновой функции в исследуемом образце согласуется и высокое значение параметра T_0 .

Приведенный пример показывает, что для тех объектов, в которых необходимо учитывать как спинполяризационный вклад, так и вклад от эффекта сжатия, часто может реализовываться ситуация, когда условия $a < l_H$ и $x = \mu H/k_{\rm B}T \sim 1$ будут выполняться одновременно. Иными словами, для механизма сжатия будет справедлива асимптотика слабого поля, в то время как для спин-поляризационного вклада будет наблюдаться отклонение от закона $\ln[\rho(H)/\rho(0)] \sim H^2$, обусловленное насыщением этого эффекта (см. (6)). В такой ситуации можно предложить следующий алгоритм количественного анализа экспериментальных данных положительного магнитосопротивления, позволяющий существенно расширить диапазон магнитного поля и выйти за пределы стандартного квадратичного магнитосопротивления.

Предположим, что нам известны температурная зависимоть проводимости при постоянном токе и полевая зависимость магнитосопротивления в режиме прыжковой проводимости с переменной длиной прыжка при разных температурах. Тогда в качестве первого шага следует найти T_0 и α из проводимости при постоянном токе (см. (1)).

На втором шаге следует проанализировать область квадратичного магнитосопротивления в соответствии с подходом, предложенным в работе [6]. В этом диапазоне в дополнение к спин-поляризационному механизму легко учеть поправку на сжатие волновой функции. Можно показать, что для этого может быть использована формула (2), в которой радиус локализации а заменен эффективной величиной $a_{\text{eff}} = [(a_1^4 + \varepsilon a_2^4)/(1 + \varepsilon)]^{1/4}$ (где $\varepsilon = g_2 a_2^d / g_1 a_1^d$), которая благодаря очевидному условию $a_1 < a_2$ (для водородоподобного центра $a_2 \approx 4a_1$ [10]) и экспериментально найденным величинам $\varepsilon \sim 1$ для различных углеродных наноматериалов [6] сводится к $a_{\text{eff}} \sim a_2$. В пределе слабых магнитных полей ($x \ll 1$) формула (6) дает $F(x) \approx \alpha A x^2$, и общее выражение для магнитосопротивления, учитывающего спиновую поляризацию и эффект сжатия, принимает вид [6]

$$\ln\left[\frac{\rho(H)}{\rho(0)}\right] = \left(\frac{T_0}{T}\right)^{\alpha} \alpha A_{\text{eff}}(T) \left(\frac{\mu_{\text{B}}H}{k_{\text{B}}T}\right)^2, \qquad (7a)$$

$$A_{\rm eff} = A(\mu/\mu_{\rm B})^2 + (t_d e^2 a_{\rm eff}^4 k_{\rm B}^2 T_0^{2\alpha}/c^2 \hbar_{\rm B}^2 \alpha) T^{2-2\alpha}.$$
 (7b)

Тогда из данных магнитосопротивления в слабых полях можно найти величину $A_{\rm eff}(T)$ и построить ее график как функцию $T^{2-2\alpha}$ (см. (7а) и (7b)). Видно, что экстраполяция зависимости $A_{\rm eff}(T)$ к значению T = 0 позволяет определить комбинацию параметров $A(\mu/\mu_{\rm B})^2$, а наклон прямой в координатах $A_{\rm eff} = f(T^{2-2\alpha})$ дает возможность рассчитать $a_{\rm eff}$, определив тем самым вклад от механизма сжатия при произвольной температуре в пределе слабого поля для этого эффекта.

Теперь можно сделать третий шаг и выбрать диапазон магнитных полей, где эффект сжатия описывается выражением (2), т.е. полей, в которых выполняется неравенство $l_H = \sqrt{\hbar c/eH} < a_{\text{eff}}$. В этом интервале вклад эффекта сжатия в полевую зависимость магнитосопротивления может быть вычислен для каждой температуры и вычтен из экспериментальных кривых. Остаток должен соответствовать чистому спин-поляризационному механизму, и, если температура достаточно мала, можно достигнуть диапазона $x \sim 1$, где скейлинговая функция (6) отклоняется от квадратичной асимптотики (хотя асимптотика $\ln[\rho(H)/\rho(0)] \sim H^2$ для сжатия волновой функции сохраняется). Критерием корректности проведенного разделения вкладов в магнитосопротивление будет выполнение скейлинга для спин-поляризационной части, задающегося выражением (5), т.е. все данные в координатах $(T/T_0)^{\alpha} \ln[\rho(H)/\rho(0)] = f(H/T)$ должны образовывать единую кривую.

На заключительном этапе анализа данных можно найти параметры A и μ путем аппроксимации скейлинговой кривой с помощью формулы (6). Так как комбинация $A(\mu/\mu_B)^2$ уже известна из анализа квадратичного магнитосопротивления, подгонка будет однопараметрической. Видно, что приведенный алгоритм анализа данных положительного магнитосопротивления позволяет определить все параметры модели: $a_{\text{eff}} \sim a_2$, μ и А. Далее из значений T_0 и А могут быть рассчитаны величины $g_{1,2}a_{1,2}^d$. Подчеркнем, что в отличие от обычной "моттовской спектроскопии" (см. (1)–(4)) эта процедура не позволяет находить радиус локализации a_1 и плотности состояний для D^{0} - и D^{-} -центров. Для того чтобы оценить эти параметры, необходимо сделать дополнительное предположение о величине отношения a_2/a_1 .

В случае когда магнитосопротивление в области прыжковой проводимости моттовского типа помимо положительной части содержит отрицательный вклад, анализ данных становится более сложным. В настоящий момент теория прыжковой проводимости [5] не дает явных аналитических выражений, пригодных для описания отрицательного магнитосопротивления в широком диапазоне полей. Следовательно, учет этого слагаемого может быть выполнен лишь в рамках более или менее разумных предположений о его зависимости от магнитного поля и температуры. Тем не менее и в этом случае критерием корректности разделения вкладов в магнитосопротивление может служить выполнение универсального скейлингового соотношения для спинполяризационной части. В следующем разделе применение предложенной схемы анализа данных продемонстрировано на примере углеродного наноматериала с прыжковой проводимостью, магнитосопротивление которого содержит положительный и отрицательный вклады.

Прыжковая проводимость и магнитосопротивление углеродного наноматериала на основе одностеночных углеродных нанотрубок

Исследуемые образцы синтезировались из одностеночных углеродных нанотрубок методом термобарической закалки в условиях высокого давления. В качестве исходного использовался материал, полученный осаждением в дуговом разряде и содержавший примесь никелевого катализатора. Содержание магнитной примеси никеля определялось с помощью вибрационного магнитометра. Дальнейшая обработка при высоком давлении и температуре проводилась в камере типа "Тороид" [11] с использованием изолирующего контейнера из NaCl. Структура приготовленных таким образом образцов характеризуется высокой степенью разупорядочения, и на кривых рентгеновской дифракции обнаруживается лишь несколько широких максиумов. Оценка корреляционной длины неупорядоченной углеродной сетки дает значение 1-2 nm. Более подробное описание влияния условий синтеза на структуру полученного нами углеродного наноматериала будет опубликовано отдельно.

Обнаружено, что проводимость образцов, синтезированных при $p_{\rm syn} = 7 \, {\rm GPa}$ и $T_{\rm syn} = 300^\circ {\rm C}$ и содержа-

Рис. 3. Температурная зависимость удельного сопротивления и полевые зависимости магнитосопротивления в области прыжковой проводимости для образцов углеродного наноматериала, полученного из одностеночных углеродных нанотрубок.

щих 5% примеси никеля, имеет прыжковый характер и в диапазоне T < 100 К следует закону Мотта (1) с $\alpha = 1/4$ (см. вставку к рис. 3). При этом на полевых зависимостях магнитосопротивления, измеренных в магнитном поле до 70 kOe, наблюдаются положительный и отрицательный вклады (рис. 3). Отметим, что такая структура магнитосопротивления качественно согласуется с результатами опубликованных ранее исследований прыжковой проводимости образцов, приготовленных на основе одностеночных углеродных нанотрубок с примесью никеля и имевших показатель степени прыжковой проводимости $\alpha = 1/3$ [12].

Для применения сформулированного в предыдущем разделе алгоритма анализа данных $\ln[\rho(H)/\rho(0)]$ необходимо вычесть отрицательный вклад. Для аналитического описания этого члена мы использовали модельные соотношения $\ln[\rho(H)/\rho(0)] \sim -\tanh^2(H/H^*)$ и $\ln[\rho(H)/\rho(0)] \sim -\sqrt{H}$, которые передают две различные физические ситуации: насыщение или некоторую слабую полевую зависимость отрицательного магнитосопротивления в сильном магнитном поле. Выполненные расчеты показали, что параметры модели спинзависимого прыжкового транспорта, получаемые из положительной части магнитосопротивления, в двух исследованных случаях различались по абсолютной величине не более чем на 15%. В то же время модель отрицательного вклада $\ln[\rho(H)/\rho(0)] \sim = -\tanh^2(H/H^*)$ характеризовалась меньшей точностью аппроксимации формы полевых зависимостей магнитосопротивления, и по сравнению с моделью $\ln[\rho(H)/\rho(0)] \sim -\sqrt{H}$ величина среднего квадратичного отклонения увеличивалась в 1.5-2.5 раза. Следствием этого являлось также соответствующее увеличение погрешности определения параметров спин-поляризационной модели при использовании зависимости отрицательного магнитосопротивления вида $\ln[\rho(H)/\rho(0)] \sim = -\tanh^2(H/H^*)$. Так

Рис. 4. Пример разделения различных вкладов в магнитосопротивление. *1* — экспериментальная кривая, *2* — отрицательный вклад, *3* — магнитосопротивление, обусловленное эффектом сжатия волновой функции, *4* — спин-поляризационная часть магнитосопротивления. На вставке показана температурная зависимость *A*_{eff} (см. текст).

как модельный корневой закон отрицательного магнитосопротивления обеспечивает лучшее воспроизведение экспериментального вида кривых $\ln[\rho(H)/\rho(0)] = f(H)$ и дает минимальную ошибку в определении параметров спин-поляризационного транспорта, далее мы рассмотрим результаты, полученные для этого случая.

Следует отметить, что аппроксимирующее выражение для отрицательного магнитосопротивления $\ln[\rho(H)/\rho(0)] \sim -\sqrt{H}$ некорректно в пределе $H \to 0$, где должна выполняться асимптотика $\ln[\rho(H)/\rho(0)] \sim -H^2$ (эта ситуация хорошо известна в теории квантовых поправок [13,14]). Чтобы избежать излишнего усложнения аналитического выражения для отрицательного вклада, мы ограничили снизу диапазон магнитного поля величиной $H_{\min} \sim 2$ кОе и добавили в подгоночную формулу постоянный член. Таким образом, для описания полевых зависимостей магнитосопротивления в области слабого магнитного поля мы применяли выражение вида

$$\ln[\rho(H)/\rho(0)] = A_2 H^2 - A_{1/2} \sqrt{H} + A_0, \qquad (8)$$

которое было использовано для подгонки в диапазоне $H_{\min} < H < H_{\max}$. Ограничивающее сверху магнитное поле $H_{\max}(T)$ зависит от температуры и соответствует пределу применимости квадратичной асимптотики $\ln[\rho(H)/\rho(0)] \sim H^2$ для положительного магнитосопротивления.

Найденные для каждой температуры коэффициенты A_0 и $A_{1/2}$ определяют отрицательный вклад в магнитосопротивление, вычитание которого позволяет найти положительный вклад в магнитосопротивление, который необходимо проанализировать в рамках предлагаемого теоретического подхода. Полученные в результате подгонки коэффициенты A_2 в выражении (8) были использованы для вычисления A_{eff} (см. (7b)). Из вставки к рис. 4 видно, что температурная зависимость этого параметра хорошо согласуется с теоретически предсказанной для случая, когда одновременно необходимо учитывать спинполяризационный механизм и эффект сжатия волновой функции (см. (7b)). По зависимости $A_{\text{eff}}(T)$ было определено значение $a_{\rm eff} \sim a_2 \sim 6\,{\rm nm}$, которое оказывается меньше магнитной длины $l_H(70 \,\mathrm{kOe}) \sim 10 \,\mathrm{nm}$. Таким образом, формула (2) с $a = a_{eff}$ может быть использована для расчета вклада от эффекта сжатия в положительное магнитосопротивление для каждой исследованной температуры. В результате мы видим, что для экспериментальных данных рис. 3 можно найти спин-поляризационный вклад путем вычитания отрицательного магнитосопротивления и вклада от эффекта сжатия. Эта процедура проиллюстрирована на рис. 4, где показаны различные компоненты магнитосопротивления при T = 2 К.

Теперь можно проверить справедливость скейлингового соотношения (5) для спин-поляризационной части магнитосопротивления. Из данных рис. 5 следует, что ожидаемый в теории скейлинг хорошо выполняется, что подтверждает корректность выполненного разделения магнитосопротивления на различные вклады в присутствии отрицательного магнитосопротивления. Более того, формула (6) для F(x) удовлетворительно передает форму кривой, включая тенденцию к насыщению при *H*/*T* > 16 kOe/K (сплошная линия на рис. 5). При этом найденное значение эффективного магнитного момента составляет $\mu = 0.66 \pm 0.07 \mu_{\rm B}.$ Подчеркнем, что подгонка данных рис. 5 с помощью формулы (6) является однопараметрической, поскольку величина $A_{\rm eff}(T=0) = (\mu/\mu_{\rm B})^2 A$ известна (см. вставку к рис. 4).

Полученные значения μ позволяют найти $A = (4.1 \pm 0.4) \cdot 10^{-2}$ и оценить отношение $\varepsilon = g_2 a_2^d / g_1 a_1^d \approx 1.08$. Эти результаты согласуются со значениями параметров, найденными в предыдущих ра-

Рис. 5. Скейлинг спин-поляризационной части магнитосопротивления углеродного наноматериала, полученного из одностеночных углеродных нанотрубок. Сплошная линия — расчет по формуле (6).

ботах для различных углеродных наноматериалов [6,7]. Исходя из величины характерной температуры в законе Мотта $T_0 = 231 \,\mathrm{K}$ (см. вставку к рис. 3) можно оценить значение параметра $g_1 a_1^3 \approx 0.85 \,\mathrm{meV^{-1}}$. Принимаая для радиуса локализации оценку $a_1 \sim 1.5 - 2 \,\mathrm{nm}$, соответствующую отношениям $a_2/a_1 \sim 3 - 4$, находим, что плотность состояний в углеродном наноматериале на основе одностеночных углеродных нанотрубок должна быть $g_1 \sim (1.1 - 2.5) \cdot 10^{20} \,\mathrm{cm^{-3} \cdot meV^{-1}}$.

4. Заключение

В настоящей работе предложена процедура анализа данных прыжковой проводимости моттовского типа $(\alpha = 1/4)$, основанная на учете спин-поляризационного механизма. Основной идеей развитого нами подхода является скейлинг прыжкового магнитосопротивления вида $(T/T_0)^{\alpha} \ln[\rho(H)/\rho(0)] = f(H/T)$, который, во-первых, позволяет расширить диапазон магнитного поля и, во-вторых, может служить критерием правильности разделения различных вкладов в магнитосопротивление. Указанная процедура была экспериментально проверена для сложного случая, когда магнитосопротивление имеет несколько вкладов, включая вклад от эффекта сжатия, спин-поляризационный и отрицательный вклады. Мы показали, что рассмотренная схема анализа данных позволяет найти все параметры локализованных состояний, фигурирующие в теории. Установлено, что скейлинговая функция (6) хорошо описывает экспериментальные данные для углеродных наноматериалов на основе смеси фуллеренов C_{2N} и одностеночных углеродных нанотрубок с магнитной примесью.

Следует отметить, что в предыдущих работах [6,7] был рассмотрен случай только положительного магнитосопротивления и квадратичной асимптотики слабого магнитного поля $\ln[\rho(H)/\rho(0)] \sim H^2$, не позволяющей найти значение эффективного магнитного момента, и анализ данных проводится в предположении $\mu = \mu_{\rm B}$. В настоящей работе на примере как немагнитного материала на основе смеси фуллеренов C_{2N} , так и материала, приготовленного из одностеночных нанотрубок с магнитной примесью никеля, мы показали, что соответствие эксперимента модельному расчету достигается для $\mu \sim 0.7 - 0.8 \mu_{\rm B}$. Этот результат позволяет предположить, что у углеродных наноматериалов возникает перенормировка эффективного магнитного момента электронов, участвующих в прыжковом транспорте. Природа этой аномалии остается неясной; из поученных данных можно заключить, что в материале с магнитными примесями изменение магнитного момента выражено сильнее.

Указание на возможную перенормировку эффективного магнитного момента у углеродных наноматериалов получено на основании анализа данных прыжкого транспорта и, разумеется, является косвенным. Тем не менее в литературе известны экспериментальные свидетельства того, что магнетизм некоторых слабомагнитных углеродных систем имеет аномальный характер и, в частности, характеризуется редуцированными значениями эффективного магнитного момента [15,16]. Таким образом, в качестве актуальной научной задачи будущих исследований можно сформулировать изучение магнитных свойств различных углеродных наноматериалов, включая определение величины магнитного момента прямыми спектроскопическими методами.

Авторы признательны А.А. Пронину за помощь в проведении ряда экспериментов.

Список литературы

- Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников. Наука, М. (1979).
- [2] И.П. Звягин. Кинетические явления в неупорядоченных полупроводниках. Изд-во МГУ, М. (1984).
- [3] С.В. Демишев, Д.Г. Лунц, А.Г. Ляпин, Н.Е. Случанко, Н.А. Самарин. ЖЭТФ 110, 334 (1996).
- [4] M.E. Raikh, J. Czingon, Qiu-yi Ye, F. Koch, W. Schoepe, K. Ploog. Phys. Rev. B 45, 6015 (1992).
- [5] B.I. Shklovskii. B.Z. Spivak. In: Hopping transport in solids / Eds M. Pollak, B. Shklovskii. North-Holland, Amsterdam (1991). P. 271.
- [6] С.В. Демишев, А.А. Пронин. ФТТ 48, 1285 (2006).
- [7] А.А. Пронин, В.В. Глушков, М.В. Кондрин, А.Г. Ляпин, В.В. Бражкин, Н.А. Самарин, С.В. Демишев. ФТТ 49, 1336 (2007).
- [8] A. Kurobe, H.J. Kamimura. Phys. Soc. Jpn. 51, 1904 (1982).
- [9] K.A. Matveev, L.I. Glazman, P. Clarke, D. Ephron, M.R. Beasley. Phys. Rev. B 52, 5289 (1995).
- [10] В.М. Галицкий, Б.М. Карнаков, В.И. Коган. Задачи по квантовой механике. Наука, М. (1981).
- [11] A.G. Lyapin, V.V. Brazhkin, S.G. Lyapin, S.V. Popova, T.D. Varfolomeeva, R.N. Voloshin, A.A. Pronin, N.E. Sluchanko, A.G. Gavrilyuk, I.A. Trojan. Phys. Stat. Sol. (b) **211**, 401 (1999).
- [12] G.T. Kim, E.S. Choi, D.C. Kim, D.S. Suh, Y.W. Park, K. Liu, G. Duesberg, S. Roth. Phys. Rev. B 58, 16 064 (1998).
- [13] Б.Л. Альтшулер, А.Г. Аронов, А.И. Ларкин, Д.Е. Хмельницкий. ЖЭТФ 81, 768 (1981).
- [14] A. Kawabata. J. Phys. Soc. Jpn. 49, 628 (1980).
- [15] С.В. Демишев, Л. Векхёйзен, В.В. Мощалков, А.А. Пронин, Н.Е. Случанко, Н.Г. Спицина, Э.Б. Ягубский. Письма в ЖЭТФ 69, 733 (1999).
- [16] S.V. Demishev, N.E. Sluchanko, L. Weckhuysen, V.V. Moshchalkov, H. Ohta, S. Okubo, Y. Oshima, N.G. Spitsina. ΦΤΤ 44, 425 (2002).