оз Особенности абсорбции газов во вращающейся проницаемой пористой среде

© А.Н. Бажайкин

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск E-mail: bazhan@itam.nsc.ru

Поступило в Редакцию 4 июля 2013 г.

Экспериментально исследована абсорбция аммиака, двуокиси серы и углекислого газа водой во вращающемся ячеисто-пористом диске. Получены данные по степени очистки воздуха от этих примесей и обнаружена аномально высокая их растворимость, превышающая равновесные значения. Результаты показали возможность создания эффективных и экономичных абсорберов для очистки воздуха от газообразных примесей.

Абсорбционная очистка газов (воздуха) от нежелательных примесей как наиболее универсальный способ осуществляется с помощью разнообразных скрубберов, которые имеют относительно большие габариты, требуют значительных расходов жидкого сорбента и материальных затрат при эксплуатации. Поэтому совершенствование абсорбционных процессов для повышения их эффективности и экономичности является актуальным. Решение данной задачи возможно путем интенсификации движения реагирующих сред, увеличения поверхности их взаимодействия и правильного подбора сорбента, т.е. создания условий для повышения вероятности селективного захвата и удержания молекул удаляемых примесей жидким сорбентом. Такие условия осуществимы в пористых материалах, обладающих большой внутренней поверхностью и проницаемых для газов и жидкостей, например в высокопористых ячеистых материалах (ВПЯМ) [1]. Диск из никелевого ВПЯМ, имеющий пористость 95% и размер ячеек 1-2 mm, показан на рис. 1, а. Вращения таких дисков вызывают сложные перемещения заполняющей их и окружающей среды [2]: находящаяся внутри диска среда (жидкость, газ) под действием центробежных сил и трения движется в радиальном направлении от центра к периферии и выбрасывается с

82

Рис. 1. Диск из ВПЯМ (*a*) и схема абсорбера (*b*).

цилиндрической поверхности диска; одновременно с этим к торцевым поверхностям подходят и всасываются (за счет разрежения внутри диска) новые порции среды и процесс повторяется, т.е. диск работает в качестве элемента вентилятора. При одновременной подаче двух сред: очищаемого газа (воздуха) и жидкого сорбента при совместном перемещении внутри вращающегося диска по развитой поверхности пор происходит их интенсивное взаимодействие с поглощением примесей сорбентом. Для практической реализации описанных процессов создан абсорбер [3], изображенный схематично на рис. 1, b и представляющий собой центробежный вентилятор, в корпусе которого 1 расположена обечайка — улитка 2 с диском 3. Корпус 1 соединен с выходным патрубком 4 и имеет входной патрубок 5, внутри которого имеется коллектор 6, куда подается сорбент из емкости 7. При вращении диска 3 очищаемый газ входит в патрубок 5, одновременно в коллектор 6 поступает жидкий сорбент и в результате прохождения через диск, сопровождающегося массообменными процессами, реагенты выбрасываются со всей цилиндрической поверхности диска в улитку 2, при соударении с которой происходит сепарация сред, заканчивающаяся в выходном патрубке 4; при этом жидкий сорбент с поглощенными примесями стекает по ограждающим поверхностям и эвакуируется

Удаляемая примесь	C_o , ppm	C_k , ppm	$G_a \cdot 10^3$, kg/s	$G_w \cdot 10^3$, kg/s
NH_3	13	8	26	2.6
	195	70	37	8.3
	30	7	18	5.4
	225	45	40	18
	100	9	25	25
SO_2	22	18	20	2.0
	15	9	19	5.0
	21	11	19	7.5
	21	10	19	10
CO_2	310	303	44	2.2
	300	277	44	11
	306	270	42	21
	312	268	40	30
	310	257	38	38

через сливное отверстие 8, а очищенный газ покидает абсорбер через патрубок 4. Таким образом, описанное относительно простое и малогабаритное устройство выполняет одновременно 2 функции: вентилятора и абсорбера. Расход перерабатываемого газа зависит от размеров диска и частоты его вращения. В исследованиях использовался диск диаметром 150 mm, толщиной 20 mm и при скорости вращения 50 г/s давал расход воздуха 0.04 kg/s.

При испытаниях производилась очистка воздуха от аммиака, двуокиси серы и углекислого газа с использованием в качестве сорбента воды. Концентрация примесей в воздухе на входе (C_0) и выходе (C_k) абсорбера измерялись газоанализатором "Тест" с относительной погрешностью 5%. Условия экспериментов и измеренные концентрации приведены в таблице, где G_a и G_w — расходы очищаемого воздуха и жидкого сорбента соответственно. На основании представленных в таблице данных рассчитывалась степень очистки воздуха: $\eta = 1 - C_0/C_k$ основная характеристика абсорбера. Графики зависимости η от относительного расхода сорбента $G = G_w/G_a$ показаны на рис. 2, откуда видно качественное подобие аппроксимирующих экспериментальные данные кривых: с увеличением расхода сорбента повышается эффективность очистки, особенно при малых значениях G; при больших расходах кривые стремятся к насыщению. Степень очистки существенно зависит от растворимости (α) примеси в воде, которая при 293 К составляет

Рис. 2. Зависимость степени очистки воздуха (η) от относительного расхода сорбента (G): I — NH₃, 2 — SO₂, 3 — CO₂.

для NH₃ — 710, для SO₂ — 33 и для CO₂ — 0.878 m³/m³ [4], поэтому кривая *I* расположена выше кривых *2* и *3*. Так, например, при одинаковых *G* = 0.5 значения η для данных примесей составляют 0.83, 0.52 и 0.12 соответственно, хотя значения α отличаются друг от друга в 20–40 раз. Полученные данные являются результатом взаимодействия противоположных процессов: абсорбции и десорбции, причем роль последней возрастает со снижением α . Так, если вероятность поглощения водой различных молекул (в том числе азота и кислорода воздуха) одинакова, то вероятность обратного выхода из воды молекул NH₃ меньше, чем SO₂, еще меньше, чем CO₂ и тем более молекул в составе воздуха: O₂(α = 0.032) и N₂(α = 0.016) [4], которые практически не поглощаются водой.

Немаловажным представляется рассмотрение полученных результатов с точки зрения равновесия абсорбционных процессов, кото-

рое для идеальных и разбавленных растворов системы жидкость-газ описывается законом Генри: $P_a = K_{\rm H}C_{w^*}$, где P_a — парциальное давление поглощаемого компонента в газовой среде, C_{w^*} — мольная концентрация компонента в воде, $K_{\rm H}$ — коэффициент Генри. При сравнении C_{w^*} с концентрацией компонента, поглощенного водой, рассчитанной по экспериментальным данным (C_w) , можно определить степень отклонения результатов экспериментов от равновесия в виде отношения: $\beta = C_w/C_{w^*}$ (при равновесии $\beta = 1$). Значения C_w рассчитываются по материальному балансу поглощаемого компонента: $C_oG_a = C_kG_a + C_wG_w$, где в левой части расход компонента в очищенном воздухе, а в правой части расходы компонента в очищенном воздухе и поглощенного водой. Учитывая, что $G = G_w/G_a$, получим

$$G_w = (C_o - C_k)/G,\tag{1}$$

где все величины в правой части находятся из таблицы.

Значения Ра определяются на основании закона Дальтона в виде

$$P_a = P_o C_o M_a / M_k, \tag{2}$$

где P_o и M_a — давление и молекулярный вес очищаемого воздуха, M_k — молекулярный вес удаляемого компонента. Подставляя (2) в формулу Генри, получим выражение для C_{w^*} :

$$C_{w^*} = P_o C_o M_a / M_k K_{\rm H}; \tag{3}$$

тогда расчетная формула для β получается делением (1) на (3):

$$\beta = (C_o - C_k)M_k K_{\rm H}/P_o C_o M_a G;$$

учитывая $(C_o - C_k)/C_o = \eta$, окончательно получим

$$\beta = \eta K_g M_k / GP_o M_a. \tag{4}$$

В формуле (4) значения η и *G* берутся из рис. 2, коэффициенты Генри при температуре 293 К для NH₃, SO₂ и CO₂ равны 0.823, 7.8 и 1440 atm [5]; $P_o = 1$ atm.

На рис. 3, *a*, *b*, *c* представлены данные расчета по формуле (4) для перечисленных газов, откуда видно, что величины β в основном больше 1 ($\beta = 1$ — штриховые линии), т. е. превышают равновесные значения, что

Рис. 3. Превышение над равновесной абсорбцией β (по формуле [4]) и β' (по формуле [8]) для разных примесей: $a - NH_3, b - SO_2$ и $c - CO_2$.

является неожиданным с точки зрения теории растворимости, согласно которой газы поглощаются жидкостью до тех пор, пока между ними не наступит равновесие. Для разных газов это превышение имеет место в разной степени (данные показаны точками). Значения β у NH₃ достигают 1.8 при малых *G* и только с ростом *G* больше 0.4 становятся меньше 1 (рис. 3, *a*). Еще большие величины β наблюдаются на рис. 3, *b* для SO₂ ($\beta = 17-31$), т.е. превышение больше чем на порядок. И более чем на 2 порядка больше равновесия составляет поглощение CO₂ водой ($\beta = 370-870$), показанное на рис. 3, *c*.

Полученные результаты расчетов, показавшие аномально высокую растворимость газов, нуждаются в подтверждении, тем более что закон Генри справедлив для разбавленных растворов или для слаборастворимых в воде газов. Критерием равновесия также является равенство парциальных давлений компонента в несущем газе и поглощенного жидкостью: $P_a = P_{w^*}$. Значения P_a определяются формулой (2), а P_{w^*} находится из уравнения состояния компонента в жидкости: $P_w = m_k RT_k/M_k V_k$, где m_k , M_k , V_k и T_k — масса, молекулярный вес, парциальный объем и абсолютная температура компонента; R — газовая постоянная. Умножая числитель и знаменатель на V_w — объем жидкости в растворе, после преобразований и замен получим

$$P_{w^*} = C_{w^*} \rho_w R T_k / \alpha M_k. \tag{5}$$

В формуле (5) $\rho_w = m_w/V_w$ — плотность жидкости, $Cw_{w*} = m_k/m_w$ — концентрация компонента в жидкости при равновесии, $\alpha = V_k/V_w$ — растворимость компонента в воде. Подставляя формулы (2) и (5) в критерий равновесия после преобразований получим выражение для C_{w*} :

$$C_{w^*} = \alpha C_0 P_o M_a / R T_k \rho_w. \tag{6}$$

Степень отклонения результатов экспериментов от равновесия $\beta' = C_w/C_{w^*}$, определенную последним способом, получим делением формул (1) на (6):

$$\beta' = \eta \rho_w R T_k / \alpha G P_o M_a; \tag{7}$$

подставляя в (7) значения величин: $\rho_w = 1000 \text{ kg/m}^3$, R = 8.31 kJ/(kmol·K), $T_k = 293 \text{ K}$, $P_o = 10^5 \text{ N/m}^2$, $M_a = 29 \text{ kg/(kmol)}$, получим расчетную формулу для β' :

$$\beta' = 840 \,\eta/(\alpha \cdot G); \tag{8}$$

значения растворимости α для соответствующих примесей приведены выше, а пары величин η и *G* для них взяты из рис. 2.

Результаты расчетов по формуле (8) представлены на рис. 3, *a*, *b*, *c*, откуда видно, что для всех 3 газовых примесей значения β' превышают равновесные значения во всем диапазоне изменения *G*, что подтверждает данные по β , хотя значения β и β' различаются в 1.5–2 раза для одной и той же примеси. Проведенные аналогичные расчеты для промышленных скрубберов (по очистке от NH₃) показали значения $\beta = 0.1-0.2$, что на порядок меньше описываемых результатов и предполагает возможность создания эффективных и экономичных абсорберов с проницаемым пористым ротором. Причиной сверхравновесной абсорбции газов может быть совокупность факторов, связанная с интенсивным перемешиванием реагирующих сред, форсированной абсорбцией и ограниченной десорбцией примесей в стесненных условиях пористых каналов и ячеек при наличии значительных перегрузок и локальных давлений, вызываемых центробежными силами.

Список литературы

- [1] Анциферов В.Н., Храмцов В.Д. // Перспективные материалы. 2000. № 5. С. 56-60.
- [2] Баев В.К., Фомин В.М., Чусов Д.В. и др. / Патент RU № 2256861. 2005.
- [3] Баев В.К., Бажайкин А.Н., Исмагилов З.Р. и др. / Патент RU № 2343960. 2009.
- [4] Справочник по неорганической химии / Под ред. Р.А. Лидина. М.: Химия, 1987. 319 с.
- [5] Рамм В.М. Абсорбция газов. М.: Химия, 1966. 767 с.