09

## Аппроксимация показателя поглощения пленки при хромогенном эффекте

## © В.И. Шаповалов, А.Е. Комлев, А.А. Комлев, А.А. Морозова

Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) E-mail: vishapovalov@mail.ru

## Поступило в Редакцию 27 декабря 2013 г.

Предложен новый метод аппроксимации с помощью распределения Брейта– Вигнера дисперсии показателя поглощения пленки, слабо поглощающей в видимом диапазоне длин волн после осаждения и окрашенной в результате хромогенного эффекта. Использованы авторское аналитическое описание спектра пропускания образца и методика вычисления дисперсии оптических констант по экспериментальному спектру пропускания. Метод иллюстрируется на примере электрохромного эффекта в пленках WO<sub>3-x</sub>.

Более сорока лет хромогенные свойства пленок различных материалов привлекают внимание специалистов [1]. Эффект обратимого окрашивания возникает в них под воздействием водородосодержащей среды (газохромизм), электрического поля (электрохромизм), УФ-излучения (фотохромизм) или нагрева (термохромизм). В частности, к таким материалам относятся некоторые простые оксиды переходных металлов: молибдена [2], ванадия [3,4], вольфрама [5] и их твердые растворы [6].

Общеизвестно, что при любом из перечисленных внешних воздействий в пленке формируются *F*-центры окраски [7]. В результате межвалентного переноса электронов в видимом диапазоне оптического спектра пленки возникает широкая полоса поглощения. При обесцвечивании спектр пленки восстанавливается [8].

В данной работе предложен новый метод аппроксимации дисперсии показателя поглощения пленки, слабо поглощающей в видимом диапазоне длин волн после осаждения и окрашенной в результате хромогенного эффекта. При изложении осажденную и обесцвеченную пленку будем считать идентичными объектами, поэтому в подстрочном обозначении различных величин для них будем использовать индекс *b* 

23

(bleached — обесцвеченный). Для окрашенных (colored) пленок используем индекс *c*.

В нашей работе [9] на основе электродинамического подхода получено аналитическое выражение, описывающее оптический спектр коэффициента пропускания  $T_b(\lambda)$  (здесь  $\lambda$  — длина волны) образца "пленка—подложка". При известных оптических параметрах пленки и подложки это выражение позволяет построить теоретический спектр  $T_b(\lambda)$  образца. С другой стороны, оно дает возможность определить по экспериментальному спектру  $T_b^*(\lambda)$  дисперсию результирующего показателя преломления пленки, который в общем случае является комплексным:

$$\tilde{n}_{fb}(\lambda) = n_{fb}(\lambda) - ik_{fb}(\lambda), \qquad (1)$$

где  $n_{fb}(\lambda)$  — дисперсия действительного показателя преломления;  $k_{fb}(\lambda)$  — дисперсия показателя поглощения.

Компоненты результирующего показателя (1), вычисленные по спектру  $T_b^*(\lambda)$  в ряде точек  $\lambda_i$ , i = 1, 2, ..., N  $(n_{fb}^*(\lambda_i)$  и  $k_{fb}^*(\lambda_i))$ , часто аппроксимируют нелинейными выражениями [9]:

$$n_{fb}(\lambda) = \frac{a_n}{\lambda^{b_n}} + n_{f0}.$$
 (2)

$$k_{fb}(\lambda) = \frac{a_k}{\lambda^{b_k}} + k_{f0},\tag{3}$$

где  $a_n$ ,  $b_n$ ,  $n_{f0}$ ,  $a_k$ ,  $b_k$ ,  $k_{f0}$  — параметры, которые вычисляют методом наименыших квадратов (МНК) по значениям  $n_{fb}^*(\lambda_i)$  и  $k_{fb}^*(\lambda_i)$ , i = 1, 2, ..., N. Выражения (2) и (3) задают нормальную дисперсию оптических констант пленки.

Будем далее считать, что окрашенная пленка имеет только одну полосу поглощения. Учтем ее аддитивно:

$$k_{fc}(\lambda) = k_{fb}(\lambda) + A_k \Delta_k(\lambda), \qquad (4)$$

где  $k_{fc}(\lambda)$  — дисперсия показателя поглощения окрашенной пленки;  $A_k$  — эмпирическая константа, описывающая степень изменения показателя поглощения;  $\Delta_k(\lambda)$  — спектральная линия, возникшая в результате окрашивания.

Выразим  $\Delta_k(\lambda)$  в (4) через распределение Брейта-Вигнера, которое обычно применяют для описания теплового уширения спектральной

линии [10]:

$$P(E) = \frac{\Gamma}{2\pi} \frac{1}{(E - E_0)^2 + \frac{\Gamma^2}{4}},$$
(5)

где P(E) — энергетический спектр квантово-механической системы;  $\Gamma$  — ширина распада;  $E_0$  — энергия стационарного состояния.

Запишем выражение для  $\Delta_k(\lambda)$ , используя (5) и известное соотношение между энергией кванта *E* в электрон-вольтах и величиной  $\lambda$  в микрометрах ( $E = 1.242/\lambda$ ):

$$\Delta_k(\lambda) = \frac{\Delta\lambda}{2.484\pi\lambda_0^2 \left[ (\frac{1}{\lambda} - \frac{1}{\lambda_0})^2 + \frac{\Delta\lambda^2}{4\lambda_0^4} \right]},\tag{6}$$

где  $\Delta \lambda$  — величина уширения спектральной линии;  $\lambda_0$  — положение максимума полосы поглощения.

Теперь задачу можно сформулировать следующим образом. Пусть измерен спектр пропускания образца с окрашенной пленкой  $T_c^*(\lambda)$ . Необходимо оценить дисперсию ее показателя поглощения (4). Для этого, во-первых, следует измерить спектр пропускания  $T_b^*(\lambda)$  образца с обесцвеченной пленкой и оценить по нему оптические константы (2) и (3). Во-вторых, используя (2)–(4) и (6) при заданной  $\lambda_0$ , необходимо подобрать такие значения  $A_k$  и  $\Delta\lambda$ , которые дают аналитический спектр  $T_c(\lambda)$ , адекватный экспериментальному  $T_c^*(\lambda)$ .

Проиллюстрируем предложенный метод на примере пленок  $WO_{3-x}$ . Нами исследовался электрохромизм аморфных пленок, осажденных на кварцевое стекло (SiO<sub>2</sub>) с предварительно нанесенным проводящим слоем In-Sn-O (ITO) толщиной 50 nm, выполняющим в электрохромном устройстве (ЭХУ) роль нижнего электрода. Пленки  $WO_{3-x}$ толщиной 460 nm были изготовлены методом реактивного магнетронного распыления на постоянном токе. Источником ионов и ионным проводником в ЭХУ служила капля раствора 1М H<sub>2</sub>SO<sub>4</sub>. Противоэлектрод был изготовлен из графита. Для измерения спектров пропускания образцов в диапазоне 400–1000 nm использован спектрометр ISM3600 (разработки СПбГЭТУ "ЛЭТИ"), имеющий спектральное разрешение не более 2.0 nm и абсолютную ошибку измерения длины волны не более  $\pm 0.5$  nm. Источником излучения служила галогеновая лампа.

На рис. 1 точками представлены экспериментальные спектры пропускания  $T_b^*(\lambda)$  (при  $Q_{inj} = 0$ ) и  $T_c^*(\lambda)$  (при  $Q_{inj} > 0$ ) образца



**Рис. 1.** Спектры образца WO<sub>3</sub>/ITO/SiO<sub>2</sub>, при разной плотности инжектированного в пленку WO<sub>3</sub> заряда (точки — экспериментальные спектры, сплошные линии построены по аналитическому выражению).

 $WO_{3-x}/ITO/SiO_2$  при разной плотности инжектированного заряда  $Q_{inj}$ . Качественно в изменениях спектров на рис. 1 можно отметить две особенности. Одна из них представляет суть электрохромизма в пленках  $WO_{3-x}$ , при котором существенно уменьшается коэффициент пропускания в красной области и ближнем ИК-диапазоне. Поэтому пленка окрашивается в синий цвет. Другая особенность состоит в том, что спектры незначительно сдвигаются в коротковолновую область.

При анализе экспериментальных данных на первом шаге по спектру  $T_b^*(\lambda)$  в ряде точек были вычислены значения компонентов результирующего показателя (1), которые обозначены через  $n_{fb}^*$  и  $k_{fb}^*$ . Результаты, показанные на рис. 2 точками, были аппроксимированы выражениями (2) и (3). Применение метода наименьших квадратов (МНК) привело к следующим формулам:

$$n_{fb}(\lambda) = \frac{1.85 \cdot 10^{-2}}{\lambda^{2.91}} + 2.04,\tag{7}$$

$$k_{fb}(\lambda) = \frac{1.93 \cdot 10^{-4}}{\lambda^{4.3}} + 0.00021.$$
(8)



**Рис. 2.** Дисперсия показателя преломления (*a*) и поглощения (*b*) пленки WO<sub>3</sub> после осаждения (точки — результаты вычислений по экспериментальным данным по спектру  $T_b^*(\lambda)$ , сплошные линии — аппроксимация методом МНК).

На рис. 1 сплошной линией показан спектр  $T_b(\lambda)$ , построенный по аналитическому выражению с использованием (7) и (8). Следует отметить близость между экспериментальным  $T_b^*(\lambda)$  и теоретическим  $T_b(\lambda)$  спектрами, что свидетельствует о корректности испольуземой методики.

Параметры окрашенной пленки

| $Q_{inj},\mathrm{mC/cm}^2$ | $A_k$ , $\mu \mathrm{m}^{-1}$ | $\Delta\lambda, \mu m$ | $n_{f0}$ |
|----------------------------|-------------------------------|------------------------|----------|
| 6.2                        | 0.05                          | 0.37                   | 2.02     |
| 19.4                       | 0.23                          | 0.53                   | 1.94     |
| 23.9                       | 0.45                          | 0.66                   | 1.88     |
| 48.6                       | 0.75                          | 0.68                   | 1.75     |
| 89.2                       | 1.50                          | 0.75                   | 1.50     |

На втором шаге были определены теоретические спектры пленки во всех окрашенных состояниях. Для каждого спектра  $T_c^*(\lambda)$ , изображенного точками на рис. 1, вычисляли теоретический спектр, используя для показателя преломления  $n_{fb}(\lambda)$  выражение (7), а для показателя поглощения  $k_{fc}(\lambda)$  — выражение (4) с учетом (6) и (8), предполагая, что полоса поглощения расположена при  $\lambda_0 = 0.91 \,\mu$ m. При вычислениях осуществлялся подбор значений эмпирической константы  $A_k$  и величины уширения спектральной линии  $\Delta\lambda$ , которые обеспечивали наилучшее совпадение спектров  $T_c^*(\lambda)$  и  $T_c(\lambda)$ . Однако оказалось, что сдвиг спектров, отмеченный выше, требует изменения в выражении (7) и величины  $n_{f0} = 2.04$ . В таблице сведены результаты вычислений, а на рис. 1 сплошными линиями показаны теоретические спектры пленки в окрашенном состоянии.



**Рис. 3.** Дисперсия показателя поглощения окрашенной пленки WO<sub>3</sub> за счет инжекции заряда.

Кривые на рис. 3 отображают дисперсии показателя поглощения пленки в окрашенных состояниях, построенные по выражению (4) с учетом (6), (8), значений  $A_k$  и  $\Delta\lambda$  (см. таблицу).

Выполненные иследования позволили установить:

 применение распределения Брейта-Вигнера дает возможность аппроксимировать дисперсию показателя поглощения пленки, слабо поглощающей в видимом диапазоне длин волн после осаждения и окрашенной в результате хромогенного эффекта;

2) использование предложенного метода для пленок  $WO_{3-x}$ , окрашенных в результате электрохромного эффекта, позволило установить, что: дисперсия показателя поглощения пленки значительно изменяется, приобретая экстремум; степень изменения показателя поглощения возрастает примерно пропорционально  $Q_{inj}$ ; возрастание величины уширения спектральной линии при увеличении  $Q_{inj}$  имеет насыщение; асимптотическое значение дисперсии показателя преломления уменьшается примерно пропорционально  $Q_{inj}$ .

Исследования проводятся при поддержке РФФИ (грант 12-03-00731-а).

## Список литературы

- [1] Deb S.K. // Appl. Opt. 1969. V. 8. P. 192–195.
- [2] Gavrilyuk A., Tritthart U., Gey W. // Sol. Ener. Mater. Sol. Sells. 2011. V. 95. P. 1846–1851.
- [3] Patil C.E., Jadhav P.R., Tarwal N.L. et al. // AIP Confer. Proc. 2013. V. 1536. P. 517–518.
- [4] Najdoski M., Koleva V., Demiri S. // Mater. Res. Bull. 2012. V. 47. P. 737-743.
- [5] Шаповалов В.И., Лапшин А.Е., Комлев А.Е. и др. // ЖТФ. 2013. Т. 83. В. 9. С. 73–83.
- [6] Patil C.E., Jadhav P.R., Tarwal N.L. et al. // Mater. Chem. Phys. 2011. V. 126. P. 711–716.
- [7] Giannouli M., Leftheriotis G. // Sol. Energy Mater. Sol. Cells. 2011. V. 95.
   P. 1932–1939.
- [8] Songara S., Gupta V., Patra M.K. et al. // J. Phys. Chem. Solid. 2012. V. 73. P. 851–857.
- [9] Babybin A.A., Shapovalov V.I. // Inter. J. Opt. 2010. V. 2010. Art. ID 137572.
- [10] Ландау ЛД., Лифшиц Е.М. Квантовая механика (нерелятивистская теория). М.: Наука, 1989. 768 с.