Direct calculation of transition intensities in $\mathrm{LiYF}_{4}: \mathrm{Nd}^{3+}$

© Jinsu Zhang ${ }^{*, * *, ~ J i a h u a ~ Z h a n g *, ~ F e n g ~ L i u * * *, ~ X i a o-j u n ~ W a n g ~}{ }^{*, * * * *}$
* Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China
** Graduate School, Chinese Academy of Sciences, 100039, Beijing, China
*** Department of Physics and Astronomy, University of Georgia, GA 30602 Athens, USA
**** Department of Physics, Georgia Southern University, GA 30460 Statesboro, USA
E-mail: zjiahua@public.cc.jl.cn, xwang@georgiasouthern.edu

Abstract

We will extend Duan's simple model to analyze the mixing of the $4 f^{N-1} 5 d$-configuration with the $4 f^{N}$-states. We consider the explicit static coupling and traditional dynamic coupling, and fit the parameters according to the absorption spectrum in $\mathrm{LiYF}_{4}: \mathrm{Nd}^{3+}$. The parameters obtained are $T_{32}=-28 i \cdot 10^{-7}, T_{52}=-1151 i \cdot 10^{-7}$, $A_{32}^{2}=192 i \cdot 10^{-12} \mathrm{~cm}, A_{52}^{4}=i \cdot 10^{-12} \mathrm{~cm}, A_{72}^{6}=54 i \cdot 10^{-12} \mathrm{~cm}$ and $A_{76}^{6}=-680 i \cdot 10^{-12} \mathrm{~cm}$. Compared to the experimental measurements, the present model yields better results than whose obtained from the Judd-Ofelt theory.

This work is financially supported by the MOST of China (2006CB601104, 2006AA03A138) and the National Nature Science Foundation of China (10574128, 10504031).

PACS: 71.15.Qe, 71.20.Eh, 71.70.Ch, 78.20.Bh

1. Introduction

The Judd-Ofelt theory [1,2] has been widely used to calculate the optical transition properties of the $4 f^{N}$-configuration in rare earth doped hosts. However, discrepancies are observed when the theory is applied to the high energy $4 f^{N}$-excited states. Some work on considering the explicit effects of the $4 f 5 d$-configuration on the $4 f^{2} \leftrightarrow 4 f^{2}$ transitions of Pr^{2+} has been done [3]. For more than two electrons of trivalent lanthanide ions, it is difficult to distinguish between the $4 f^{N-1} 5 d$-energy eigenstates. It is nearly impossible to give a detailed explanation of the $f-d$ transition spectrum. We look for a concise method to deal with the energy states, and at the same time, we search a simpler and more intuitionistic $4 f^{N-1} 5 d$-configuration basic function form. Recently Duan et al. [4,5] developed a simple model to interpret the $4 f^{N} \leftrightarrow 4 f^{N-1} 5 d$-transitions by considering only the main interactions in the $4 f^{N-1} 5 d$ configuration.

In this paper, we continue to use this to deal with the opposite parity $4 f^{N-1} 5 d$-configuration which is related to the $f-f$-transitions. We use explicit $f-d$-mixing wave functions for the direct calculation of the $f-f$-transition intensities in the Nd^{3+}-doped LiYF_{4}. The site symmetry of the Y^{3+} sites in LiYF_{4} is S_{4}, which is often approximated in calculations by the $D_{2 d}$ symmetry since the deviation between them is small. We introduce a set of intensity parameters, including explicit static coupling parts T_{32}, T_{52} and traditional dynamic coupling parameters $A_{32}^{2}, A_{52}^{4}, A_{72}^{6}$ and A_{76}^{6} to be fitted together to the experimental data. Finally, we compare the results with the values obtained using the traditional Judd-Ofelt theory to the experimental measurements.

2. Calculation methods

The nonzero matrix elements of the electric dipole operator between the initial $\left|\varphi_{i}\right\rangle$ and final states $\left|\varphi_{f}\right\rangle$ belonging to $4 f^{3}$ are

$$
\begin{align*}
\left\langle 4 f^{N} \varphi_{i}\right| D_{p}^{1}\left|4 f^{N} \varphi_{f}\right\rangle= & \sum_{\varphi^{\prime \prime}}\left[\frac{\left\langle\varphi_{i}\right| D_{p}^{1}\left|\varphi_{i}^{\prime \prime}\right\rangle\left\langle\varphi_{i}^{\prime \prime}\right| H_{C F}\left|\varphi_{f}\right\rangle}{E\left(\varphi_{f}\right)-E\left(\varphi_{f}^{\prime \prime}\right)}\right. \\
& \left.+\frac{\left\langle\varphi_{f}\right| D_{p}^{1}\left|\varphi_{f}^{\prime \prime}\right\rangle\left\langle\varphi_{f}^{\prime \prime}\right| H_{C F}\left|\varphi_{i}\right\rangle}{E\left(\varphi_{i}\right)-E\left(\varphi_{i}^{\prime \prime}\right)}\right] \tag{1}
\end{align*}
$$

where the corresponding Hamiltonian can be written as

$$
\begin{equation*}
H_{C F}(\text { odd })=\sum_{k, q, j} A_{q}^{k} r^{k} c_{q}^{k}(j), \quad k=\text { odd number } \tag{2}
\end{equation*}
$$

the electric dipole operator D_{p}^{1}, which dominates the relevant transition, is then expressed as

$$
\begin{equation*}
D_{p}^{1}=\sum_{j} r c_{p}^{1}(j) \tag{3}
\end{equation*}
$$

where c_{q}^{k} is the irreducible tensor operator of rank k end the values of q are determined by site symmetry. In our calculation, we used the established $4 f^{N}$-atomic and crystal field parameters [6] to treat the $4 f^{N}$-energy levels. The calculation of the $4 f^{N-1} 5 d$-states has been discussed in detail in Ref. [7] and the eigenvalues of the $4 f^{N-1} 5 d$-eigenstates are given

$$
\begin{gather*}
E\left(\left|\left[\left(4 f^{N-1} \bar{\eta} \bar{S} \bar{L}, s_{d}\right) S \bar{L}\right] J ; \Gamma_{d}\right\rangle\right)=E_{0}\left(4 f^{N-1} \bar{\eta} \bar{S} \bar{L} ; \Gamma_{d}\right) \\
\quad-J_{\mathrm{ex}}\left[S(S+1)-\bar{S}(\bar{S}+1)-s_{d}\left(s_{d}+1\right)\right] / 2 \\
+\lambda_{\bar{\eta} \bar{S} \bar{L} S}[J(J+1)-S(S+1)-\bar{L}(\bar{L}+1)] / 2, \tag{4}
\end{gather*}
$$

where Γ_{d} is the irreducible representation of the site symmetry group.

The matrix element $\left\langle\varphi_{i}\right| D_{p}^{1}\left|\varphi_{i}^{\prime \prime}\right\rangle$ for the one-photon transition between the initial $4 f^{N}$-states, $\left|4 f^{N} \varphi_{i}\right\rangle$, and all the $4 f^{N-1} 5 d$-states, $\left|4 f^{N-1} 5 d \varphi_{i}^{\prime \prime}\right\rangle$, can be expressed as

$$
\begin{align*}
& \left\langle 4 f^{N} \eta S L J M_{J}\right| \sum_{i} c_{p}^{i}(j)\left|\left[\left(4 f^{N-1} \bar{\eta} \bar{S} \bar{L}, s_{d}\right) S^{\prime \prime} \bar{L}\right] J^{\prime \prime} M_{j}^{\prime \prime} ; \Gamma_{d} \gamma_{d}\right\rangle \\
& =\sqrt{N} \sum_{m_{d}} C_{m_{d}}^{\Gamma_{d} r_{d}} \sum_{M_{S} M_{L} M_{L f} m_{f}}\left\langle J M_{J} \mid S M_{S} L M_{L}\right\rangle\left\langle S M_{S} \bar{L} \bar{M}_{L} \mid J^{\prime \prime} M_{J}^{\prime \prime}\right\rangle \\
& \quad \times\left\langle L M_{L} \mid \bar{L} \bar{M}_{L} f m_{f}\right\rangle\left\langle\varphi \left\{|\bar{\varphi}\rangle\left\langle f m_{f}\right| c_{p}^{1}\left|d m_{d}\right\rangle\right.\right. \tag{5}
\end{align*}
$$

where the values of \bar{L} and the fractional parentage coefficients $\left\langle\varphi\left\{|\bar{\varphi}\rangle\right.\right.$ are listed in Ref. [8]. The values of m_{d} are integers from -2 to 2 for the calculation.

The matrix elements $\left\langle\varphi_{i}^{\prime \prime}\right| H_{C F}\left|\varphi_{f}\right\rangle$ of irreducible tensor operator between the final $4 f^{N}$-state and the $r f^{N-1} 5 d$ states, which relate to the odd-rank crystal-field interaction, can be written as

$$
\begin{align*}
& \sqrt{N}\left\langle\left[\left(4 f^{N-1} \bar{\eta} \bar{S} \bar{L}, s_{d}\right) S^{\prime \prime} \bar{L}\right] J^{\prime \prime} M_{J}^{\prime \prime} ; \Gamma_{d} \gamma_{d}\right| \sum_{j} c_{q}^{k}(j) \mid \\
& \left.\left.\left.\quad \times\left[4 f^{N} \eta^{\prime} S^{\prime} L^{\prime} J^{\prime} M_{J}^{\prime}\right]\right\rangle=\sqrt{N} \delta_{S^{\prime} S^{\prime \prime}}\left[J^{\prime}, J^{\prime \prime}, L^{\prime}\right]^{1 / 2}\langle\bar{\varphi}|\right\} \varphi^{\prime}\right\rangle \\
& \quad \times\left\{\begin{array}{ccc}
L^{\prime} & \bar{L} & 3 \\
J^{\prime \prime} & J^{\prime} & S
\end{array}\right\} \sum_{m_{d}^{\prime}} C_{m_{d}^{\prime}}^{\Gamma_{d} r_{d}} \sum_{m_{f}^{\prime}}(-1)^{S-\bar{L}-3+M_{J}^{\prime \prime} m_{f}^{\prime}} \\
& \quad \times\left(\begin{array}{ccc}
3 & J^{\prime \prime} & J^{\prime} \\
m_{f}^{\prime} & M_{J}^{\prime \prime} & -M_{J}^{\prime}
\end{array}\right)\left\langle d m_{d}^{\prime}\right| c_{q}^{k}\left|f m_{f}^{\prime}\right\rangle \tag{6}
\end{align*}
$$

where the one-electron tansor matrix elements $\left\langle f m_{f}\right| c_{p}^{1}\left|d m_{d}\right\rangle$ and $\left\langle d m_{d}^{\prime}\right| c_{q}^{k}\left|f m_{f}^{\prime}\right\rangle$ in Eq. (5) and Eq.(6) will then be expressed by the expression

$$
\begin{align*}
& \langle j m| c_{q}^{k}\left|j^{\prime} m^{\prime}\right\rangle \\
& \quad=(-1)^{2 j-m}\left[j, j^{\prime}\right]^{1 / 2}\left(\begin{array}{ccc}
j & k & j^{\prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
j & k & j^{\prime} \\
-m & q & m^{\prime}
\end{array}\right) . \tag{7}
\end{align*}
$$

According to the $f-f$-electric dipole transition mechanism, the $4 f^{N-1} 5 d$-state mixing with the initial $4 f^{N}$-state are also the component which transfer to the final $4 f^{N}$-configurations. The relevant matrix elements $\left\langle\varphi_{f}\right| D_{p}^{1}\left|\varphi_{f}^{\prime \prime}\right\rangle$ and $\left\langle\varphi_{f}^{\prime \prime}\right| H_{C F} \mid \varphi_{i}$ can be expressed by analogy with Eqs. (5) and (6).

The summation in Eq. (1) rens over all the $4 f^{N-1} 5 d$ configuration components. The sum over Γ_{d} makes the terms vanish when $m_{d} \neq m_{d}^{\prime}$ in Eqs. (5) and (6), leaving only the terms of $m_{d}=m_{d}^{\prime}$ in the calculation.

We define the parametric expression of the $4 f^{N}$-interconfiguration electric dipole transition matrix element in static coupling (SC) as

$$
\begin{equation*}
\left\langle 4 f^{N} \varphi\right| D_{p}^{1}\left|4 f^{N} \varphi^{\prime}\right\rangle_{S C}=\sum_{k, q} T_{k q} b_{q}^{(k)}, \tag{8}
\end{equation*}
$$

where the $b_{q}^{(k)}$ contains the mathematic factors, representing the states related to the initial or final state mixing, and
the energy denominator. $b_{q}^{(k)}$ is expressed by the standard tensor operator method

$$
\begin{align*}
& b_{q}^{(k)}=\sum_{\kappa}(-1)^{p} \delta_{S S^{\prime \prime}} \delta_{S^{\prime} S^{\prime \prime}} N\left[\Gamma_{d}\right]\left[J^{\prime \prime}\right]\left[J, L, J^{\prime}, L^{\prime}\right]^{1 / 2} \\
& \times\left\langle\varphi\{|\bar{\varphi}\rangle\langle\bar{\varphi}|\} \varphi^{\prime}\right\rangle\left\{\begin{array}{ccc}
L & \bar{L} & 3 \\
J^{\prime \prime} & J & S
\end{array}\right\}\left\{\begin{array}{ccc}
L^{\prime} & \bar{L} & 3 \\
J^{\prime \prime} & J^{\prime} & S
\end{array}\right\} \\
& \times\left(\begin{array}{ccc}
3 & 1 & 2 \\
-m_{d}-p & p & m_{d}
\end{array}\right)\left(\begin{array}{ccc}
2 & k & 3 \\
-m_{d} & q & m_{d}-q
\end{array}\right) \\
& \\
& \times\left[\left(\begin{array}{ccc}
3 & J^{\prime \prime} & J \\
m_{d}+p & M_{J}-m_{d}-p & -M_{J}
\end{array}\right)\right. \\
& \times\left(\begin{array}{ccc}
3 & J^{\prime \prime} & J^{\prime} \\
m_{d}-q & M_{J}-m_{d}-p & -M_{J}+p+q
\end{array}\right) /\left(E_{f}-E^{\prime \prime}\right) \\
& \tag{9}\\
& \times\left(\begin{array}{ccc}
3 & J^{\prime \prime} \\
m_{d}+p & M_{J}-m_{d}+p & -M_{J}-p-q
\end{array}\right) \\
& \left.\times\left(\begin{array}{ccc}
3 & J^{\prime \prime} & J \\
m_{d}-q & M_{J}-m_{d}+p & -M_{J}
\end{array}\right) /\left(E_{i}-E^{\prime \prime}\right)\right]
\end{align*}
$$

where κ denotes the summation that runs over all values of $\bar{L}, J^{\prime \prime}$ and m_{d}. The nonzero conditions of the $3-j$, 6- j symbols and the fractional parentage coefficients set the selection rules for the $4 f^{N} \leftrightarrow 4 f^{N}$-dipole transitions and for the $4 f^{N}-4 f^{N-1} 5 d$-mixing of Nd^{3+} in LiYF_{4}.

We define the non-dimension phenomenology intensity parameter $T_{k q}$ as

$$
T_{k q}=-\sqrt{105} A_{k q}\langle r\rangle\left\langle r^{k}\right\rangle\left(\begin{array}{ccc}
2 & k & 3 \tag{10}\\
0 & 0 & 0
\end{array}\right)
$$

where $A_{k q}$ is the odd-rank crystal-field parameter and can be obtained from lattice sum calculations, $\langle r\rangle$ and $\left\langle r^{k}\right\rangle$ denote the redial integrals between $f-d$-configurations.

The electric dipole transition matrix element in dynamiccoupling is expressed as

$$
\begin{align*}
& \left\langle 4 f^{2} \varphi\right| D_{p}^{1}\left|4 f^{2} \varphi^{\prime}\right\rangle_{D C}=\sum_{\lambda, q} A_{(\lambda+1) q}^{\lambda} \\
& \times(-1)^{p}\langle\lambda(p+q), 1-p \mid(\lambda+1) q\rangle\left\langle 4 f^{2} \varphi\right| U_{p+q}^{\lambda}\left|4 f^{2} \varphi^{\prime}\right\rangle, \tag{11}
\end{align*}
$$

where $A_{(\lambda+1) q}^{\lambda}$ are the dymanic-coupling parameters. The values λ are 2,4 and 6 . In the $D_{2 d}$ site symmetry, the values q are 2 in $T_{k q}$ and 2,6 in $A_{(\lambda+1) q^{*}}^{\lambda}$. The intensity parameters $T_{k q}$ and $A_{(\lambda+1) q}^{\lambda}$ are fitted to the experimental data [9] using the Nelder-Mead simplex search method. The fitting values can be used to calculated the $4 f^{3} \leftrightarrow 4 f^{3}$ transition intensities in the $\mathrm{LiYF}_{4}: \mathrm{Nd}^{3+}$ systems.

3. Results and Discussion

We apply the calculation methods to the $4 f^{3} \leftrightarrow 4 f^{3}$ transitions in the Nd^{3+}-doped LiYF_{4}. First, we determine the mixed $4 f^{2} 5 d$-components. For the ground state $4 I_{9 / 2}$

Experimental and calculated strengths of transitions from the ${ }^{4} I_{9 / 2}$ level in $\mathrm{LiYF}_{4}: \mathrm{Nd}^{3+}$

Final stated $\left\|f^{N}[S L] J\right\rangle$	Oscillator strength, $10^{-20} \mathrm{~cm}^{2}$			
		This work		
${ }^{4} F_{3 / 2}$		$0-O[9]$	Measured $[9]$	
${ }^{4} F_{5 / 2},{ }^{2} H_{9 / 2}(2)$	12519	0.098	0.168	0.083
${ }^{4} F_{7 / 2},{ }^{4} S_{3 / 2}$	13470	0.234	0.500	
${ }^{4} F_{9 / 2}$	14725	1.648	1.568	1.708
${ }^{2} H_{11 / 2}(2)$	15932	3.013	3.002	2.991
${ }^{4} G_{5 / 2},{ }^{2} G_{7 / 2}(1)$	17233	0.073	0.061	0.042
${ }^{4} G_{7 / 2}{ }^{4} G_{9 / 2}{ }^{2} K_{13 / 2}$	19298	0.201	0.234	0.248
${ }^{4} G_{11 / 2},{ }^{2} G_{9 / 2}(1),{ }^{2} D_{3 / 2}(1),{ }^{2} K_{15 / 2}$	21377	3.306	3.374	3.228
${ }^{4} P_{1 / 2},{ }^{2} D_{5 / 2}(1)$	23354	3.167	3.481	3.650
$\sigma_{\text {rms }}$		0.956	1.168	0.901

absorption, according to the nonzero conditions of the fractional parentage coefficients, both initial and final mixing states of the $4 f^{2} 5 d$-configuration come from the terms $\left[\left({ }^{3} F\right){ }^{4} F_{J} \Gamma_{d}\right]$ and $\left[\left({ }^{3} H\right)^{4} H_{J} \Gamma_{d}\right]$ in the $D_{2 d}$ site symmetry. Based on the properties for the $3-j$ symbols in Eq. (8), the values of J can be determined. For exapmle, in the transition of ${ }^{4} I_{9 / 2} \rightarrow{ }^{4} F_{3 / 2}$, the following relations can be derived: $(3, J, 3 / 2)$ and $(3, J, 9 / 2)$, thus the $4 f^{2} 5 d$-states involved in the transition are $\left[\left({ }^{3} F\right)^{4} F_{3 / 2,5 / 2,7 / 2,9 / 2} \Gamma_{d}\right]$ and $\left[\left({ }^{3} H\right){ }^{4} H_{7 / 2,9 / 2} \Gamma_{d}\right]$.

In the $D_{2 d}$ symmetry, the static coupling parameters T_{32}, T_{52} and the dynamic-coupling parameters $A_{32}^{2}, A_{52}^{4}, A_{72}^{6}$, and A_{76}^{6} are fitted by the absolute absorption intensities of the transitions from the ${ }^{4} I_{9 / 2}$ ground level to the upper J multiplets [9]. The fitted values $T_{32}=-28 i \cdot 10^{-7}$, $T_{52}=-1151 i \cdot 10^{-7}, A_{32}^{2}=192 i \cdot 10^{-12} \mathrm{~cm}, A_{52}^{4}=i \cdot 10^{-12} \mathrm{~cm}$, $A_{72}^{6}=54 i \cdot 10^{-12} \mathrm{~cm}$, and $A_{76}^{6}=-680 i \cdot 10^{-12} \mathrm{~cm}$ can be used to calculate the transition intensities originating from ${ }^{4} I_{9 / 2}$, as listed in the Table. The values obtained using the traditional Judd-Ofelt method are also presented, together with the experimental measurements. The calculated results using the current method have been substantially improved in comparison with the traditional Judd-Ofelt theory, as indicated by the room mean square deviation, $\sigma_{\text {rms }}$, shown in the last row. Next step is to extend the method to treat the transitions from the higher Nd^{3+} energy levels in the system.

4. Conclusions

A simple model is introduced to deal with the opposite parity $4 f^{N-1} 5 d$-configuration related to the $f-f$-transitions. New selection rules are applied to determine the $4 f^{2} 5 d$ components, which are able to mix with the $4 f^{3}$-transtions states. Both static coupling and dynamic-coupling are taken into account and a set of parameters are obtained using the Nelder-Mead simplex search method. Compared to the values calculation by the traditional Judd-Ofelt theory, better results have been achieved using the new method.

References

[1] B.R. Judd. Phys. Rev. 127, 750 (1962).
[2] G.S. Ofelt. J. Chem. Phys. 37, 511 (1962).
[3] F. Liu, J.H. Zhang, S.Z. Lu, S.X. Liu, S.H. Huang, X.J. Wang. Phys. Rev. B 74, 115112 (2006).
[4] C.K. Duan, M.F. Feid, G.W. Burdick. Phys. Rev. B 66, 155108 (2002).
[5] C.K. Duan, M.F. Reid. J. Solid State Chem. 171, 299 (2003).
[6] L. van Pieterson, M.F. Reid, R.T. Wegh, S. Soverna, A. Meijerink. Phys. Rev. B 65, 045113 (2002).
[7] L.X. Ning, C.K. Duan, S.D. Xia, M.F. Reid, P.A. Tanner. J. Alloys. Comp. 366, 34 (2004).
[8] C.W. Nielson, G.F. Koster. Spectroscopic coefficients for the p^{n}, d^{n}, and f^{n} configurations. MIT Press, Cambridge, MA (1963).
[9] J.R. Ryan, R. Beach. J. Opt. Soc. Am. B 9, 1883 (1992).

