Адиабатические модули упругости в кристаллах ZnSe: Mn²⁺ и ZnSe: V²⁺

© В.В. Гудков****, А.Т. Лончаков***, В.И. Соколов***, И.В. Жевстовских***, В.Т. Суриков****

* Российский государственный профессионально-педагогический университет,

620012 Екатеринбург, Россия

** Уральский государственный технический университет (УПИ),

620002 Екатеринбург, Россия

*** Институт физики металлов Уральского отделения Российской академии наук,

620041 Екатеринбург, Россия

**** Институт химии твердого тела Уральского отделения Российской академии наук,

620041 Екатеринбург, Россия

E-mail: gudkov@imp.uran.ru

В кристаллах ZnSe: V²⁺ (концентрация примеси $6 \cdot 10^{18} \text{ cm}^{-3}$) и ZnSe: Mn²⁺ ($9.4 \cdot 10^{20} \text{ cm}^{-3}$) в интервале 1.4-100 K измерены температурные зависимости модулей упругости C_{44} , $(C_{11} - C_{12})/2$ и $C_l = (C_{11} + C_{12} + 2C_{44})/2$ на частоте 52 и 156 MHz. Восстановлены температурные зависимости адиабатических модулей упругости. Установлено, что смягчение симметрийных модулей наблюдается лишь в кристалле с примесью, имеющей орбитально вырожденные состояния.

Работа выполнена по плану РАН (тема № г.р. 01.02.006 133395), при частичной поддержке РФФИ (грант № 04-02-96094-р2004 урал_а).

PACS: 43.35.+d, 61.72.Vv, 64.70.Kb

1. Введение

Первые работы по исследованию эффекта Яна-Теллера ультразвуковыми методами в основном были посвящены температурным зависимостям поглощения [1-3]. Одним из важных результатов этих исследований оказалась возможность по форме кривой поглощения восстановить температурную зависимость τ — времени релаксации 3*d*-электронной подсистемы примеси. Моделирование этой зависимости позволило определить механизмы релаксации и ряд важных физических параметров, высоту потенциального барьера, деформационный потенциал и некоторые другие. Детально процедура восстановления $\tau(T)$ описана в монографии [4].

Дополнительная информация может быть получена из данных о температурных зависимостях фазовой скорости ультразвуковых волн определенной поляризации или связанных с ними компонент тензора упругих модулей (см., например, [5]). Локальные деформации решетки являются результатом изменения определенных сил, действующих между ян-теллеровским ионом и окружением. Направление этих сил задает тип вибронных мод и характер локальных деформаций. В кристаллах, имеющих структуру цинковой обманки, в силу симметрийных соображений допускаются моды є- и *т*₂-типа. Возникающие при этом деформации имеют тетрагональный или тригональный тип соответственно. На макроскопическом уровне изменение локальных сил проявляется в изменении определенного упругого модуля [6]. Таким образом, тип локальных деформаций коррелирует с модулем, который изменяется. Иными словами, измерение температурных зависимостей таких феноменологических параметров, как упругие модули,

дает возможность определить тип вибронных мод и характер локальных искажений, т. е. получить информацию о параметрах, заданных на уровне элементарной ячейки. Это оказывается возможным, поскольку локальные деформации понижают симметрию окружения примеси, и это проявляется в соответствующем симметрийном упругом модуле. В кристаллах, имеющих структуру цинковой обманки, смягчение модуля C_{44} указывает на тригональные деформации, а модуля $C_{5t} = (C_{11} - C_{12})/2$ на тетрагональные. Упругие модули могут быть измерены с высокой точностью (порядка 10^{-6}), поэтому влияние примесей даже малой концентрации может быть исследовано в ультразвуковом эксперименте.

Исходные данные таких экспериментов относятся к динамическим модулям, т.е. к модулям, зависящим от частоты. В теоретических расчетах, в которых рассматривается внутренняя или свободная энергия, в результате дифференцирования получают частотно-независимые модули: адиабатические C^{S} или изотермические C^{T} .

Взаимодействие ультразвука с какой-либо подсистемой кристалла может носить резонансный либо релаксационный характер. В экспериментальных работах, указанных выше, признаков резонансного взаимодействия обнаружено не было. Поэтому в дальнейшем будем обсуждать релаксационный характер взаимодействия. В этом случае в окрестности $\omega \tau = 1$ (ω — циклическая частота) наблюдаются аномалии поглощения α и фазовой скорости υ ультразвука. Поглощение имеет форму пика, а изменение скорости отражает переход динамического модуля C от релаксационного $C^R = C(\omega \tau \to 0)$ к нерелаксированному $C^U = C(\omega \tau \to \infty)$. Удобно представить динамический модуль упругости C как сумму вклада от релаксационного процесса C_r и остальной части C_b . Вторая составляющая также может иметь релаксационный характер, но с существенно отличным временем релаксации τ_b , а значит, иметь аномалии в другой области температур. В случае $\omega \tau_b \gg 1 \quad C^U$ представляет модуль, близкий к адиабатическому, а при $\omega \tau_b \ll 1 \quad C^R$ — модуль, близкий к изотермическому.

На частотах порядка 10^8 Hz в большинстве случаев можно считать, что C_b является адиабатическим, поэтому если определить зависимость $C^U(T)$, то она была бы температурной зависимостью адиабатического модуля упругости C^S в данном кристалле.

Ранее нами был предложен способ определения зависимостей $C^{U}(T)$ и $C^{R}(T)$ [7]. Он предполагает измерение поглощения $\alpha(T)$ и скорости v(T) ультразвука и расчет модулей по формулам

$$\frac{C^U - C_0}{C_0} = 2\left[\frac{\Delta v(T)}{v_0} + \frac{\alpha_r(T)}{k_0}\frac{1}{\omega\tau}\right],\tag{1}$$

$$\frac{C^R - C_0}{C_0} = 2 \left[\frac{\Delta v(T)}{v_0} - \frac{\alpha_r(T)}{k_0} \,\omega \tau \right],\tag{2}$$

где $k_0 = \omega/v_0$ — волновое число, α_r — вклад релаксационного процесса в общее поглощение. В наших экспериментах $\alpha_r = \alpha(T) - \alpha(0)$, где $\alpha(0) = \alpha(T \to 0)$ экстраполированное на нулевую температуру значение поглощения. Динамический модуль C_0 и фазовая скорость v_0 определены при некоторой температуре T_0 .

Данная процедура, а также метод восстановления $\tau(T)$ были применены нами при исследовании кристаллов ZnSe:Ni²⁺ [7] и ZnSe:Cr²⁺ [8]. В этих кристаллах было обнаружено смягчение симметрийных модулей: C₄₄ в кристалле, допированном Ni, и $C_{\rm st} = (C_{11} - C_{12})/2$ — в кристалле с примесью Cr. В рамках представлений об эффекте Яна-Теллера это обстоятельство можно объяснить возникновением тригональных и тетрагональных деформаций в окрестности примеси, имеющей орбитально вырожденные 3d-состояния. Представлялось интересным исследовать влияние других примесей 3*d*-элементов, как имеющих, так и не имеющих орбитально вырожденные состояния в этой же матрице. С этой целью были выполнены ультразвуковые исследования кристаллов ZnSe: V²⁺ с триплетным основным состоянием ${}^{4}T_{1}$ (электронная конфигурация e^2t^1) и ZnSe: Mn²⁺, основное состояние которого синглетное ${}^{6}A_{1}(e^{2}t^{3})$ [9]. В настоящей работе изложены результаты этих исследований.

2. Эксперимент

Монокристаллы ZnSe: V²⁺ и ZnSe: Mn²⁺ были выращены в Институте физики твердого тела РАН методом Бриджмена из расплава в условиях избыточного давления интертного газа [10]. Концентрации примесей $n_{\rm V} = 6 \cdot 10^{18}$ cm⁻³ и $n_{\rm Mn} = 9.4 \cdot 10^{20}$ cm⁻³ были определены методом масс-спектроскопии (Spectromass 2000) с индуктивно связанной плазмой.

Рис. динамических 1. Температурные зависимости модулей упругости. 1 _ $\Delta C_{44}/C_{44}$ в кристалле ZnSe: Mn²⁺; 2 — $\Delta C_{44}/C_{44}$ B ZnSe: V²⁺; 3 — $\Delta C_l/C_l$ B ZnSe: Mn²⁺; 4 — $\Delta C_l/C_l$ B ZnSe: V²⁺; 5 — $\Delta C_{st}/C_{st}$ B ZnSe: Mn^{2+} ; $6 - \Delta C_{st}/C_{st}$ b ZnSe: V^{2+} . Частота 52 MHz. $\Delta C_i/C_i = (C_i(T) - C_i(T_0))/C_i(T_0)$. Для кристалла ZnSe:V²⁺ $T_0 = 4.2 \, \text{K}$. Графики для кристалла ZnSe: Mn²⁺ смещены так, чтобы одинаковые модули разных кристаллов совпадали при $T = 100 \, \text{K}.$

Измерения были выполнены на установке, работающей по принципу высокочастотного моста, обеспечивающей точность определения изменения поглощения в зависимости от внешнего параметра (в данном случае — температуры) не менее 0.02 dB, а скорости — порядка 10^{-6} . Ультразвуковые радиоимпульсы длительностью 0.7 μ s распространялись вдоль направления [110]. В этом направлении образцы имели длину около 5 mm. Использовались несущие частоты 52 и 156 MHz.

Время релаксации определялось по формуле

$$\tau(T) = \frac{1}{\omega} \left(\frac{\alpha_1 T_1}{\alpha_r(T)T} \right) \pm \sqrt{\left(\frac{\alpha_1 T_1}{\alpha_r(T)T} \right)^2 - 1}, \quad (3)$$

где T_1 — температура, при которой $\omega \tau = 1$, $\alpha_1 = \alpha_r(T_1)$.

Низкотемпературное смягчение (рис. 1) было обнаружено для модулей C_{44} и $C_l = (C_{11} + C_{12} + 2C_{44})/2$ в кристалле с примесью V. Очевидно, что смягчение модуля C_l происходит за счет того, что C_{44} входит в C_l слагаемым. Важным обстоятельством является то, что модуль C_{st} смягчения не проявил. Следовательно, локальные деформации в кристалле ZnSe: V²⁺ имеют тригональный тип. Также не проявили смягчения и все модули кристалла с примесью Mn, подтверждая ян-теллеровскую природу ультразвуковых аномалий в кристаллах ZnSe: V²⁺, ZnSe: Ni²⁺ и ZnSe: Cr²⁺.

Рис. 2 и 3 показывают температурные зависимости релаксированных и нерелаксированных модулей в кристалле $ZnSe:V^{2+}$, полученные в результате обработки данных о поглощении и скорости ультразвука по формулам (1)–(3). Видно, что на частоте 156 MHz

Рис. 2. Нерелаксированный (адиабатический), динамический, измеренный на частоте 52 MHz, и релаксированный модули C_{44} в кристалле ZnSe: V²⁺ как функции обратной температуры. $I - \Delta C_{44}^U/C_{44}$, $2 - \Delta C_{44}/C_{44}$, $3 - \Delta C_{44}^R/C_{44}$. $\Delta C_{44}^i/C_{44} = (C_{44}^i(T) - C_{44}(T_0))/C_{44}(T_0)$, $T_0 = 4.2$ K.

Рис. 3. Нерелаксированный (адиабатический), динамический, измеренный на частоте 156 MHz, и релаксированный модули C_l в кристалле ZnSe: V²⁺ как функции обратной температуры. $1 - \Delta C_l^U/C_l$, $2 - \Delta C_l/C_l$, $3 - \Delta C_l^R/C_l$. $\Delta C_l^R/C_l = (C_l^i(T) - C_l(T_0))/C_l(T_0)$, $T_0 = 4.2$ K.

динамический модуль упругости в исследованном интервале температур трансформируется из релаксированного в нерелаксированный. На частоте 52 MHz этого не происходит в полной мере, поскольку с частотой температура T_1 уменьшается, а вместе с ней понижается и температура области такой трансформации.

3. Заключение

К основным результатам наших исследований кристаллов ZnSe: V^{2+} , ZnSe: Mn^{2+} можно отнести следующие.

Показано, что низкотемпературного смягчения модулей не наблюдается в кристалле с синглетным состоянием 3*d*-примеси, что поддерживает интерпретацию обнаруженных в кристаллах $ZnSe: V^{2+}$, $ZnSe: Ni^{2+}$ и $ZnSe: Cr^{2+}$ аномалий как проявление эффекта Яна–Теллера. Установлено, что локальные деформации в кристалле $ZnSe: V^{2+}$ имеют тригональный тип. Восстановлены температурные зависимости нерелаксированного (адиабатического) и релаксированного модулей упругости.

Авторы признательны Н.Н. Колесникову за изготовление кристалла, использованного в настоящей работе.

Список литературы

- [1] И.Б. Берсукер. ЖЭТФ 44, 1577 (1963).
- [2] E.M. Gyorgy, M.D. Sturge, D.B. Fraser, R.C. Le Craw. Phys. Rev. Lett. 15, 19 (1965).
- [3] M.D. Sturge, J.T. Krause, E.M. Gyorgy, R.C. Le Craw, F.R. Merritt. Phys. Rev. 155, 218 (1967).
- [4] M.D. Sturge. Solid state physics. Academic Press, N.Y.-London (1967). V. 20. P. 92.
- [5] B. Luthi. Physical acoustics in the solid state. Springer, Berlin– Heidelberg–N.Y. (2004). P. 119.
- [6] Н.С. Аверкиев, Т.К. Аширов, А.А. Гуткин, Е.Б. Осипов, В.Е. Седов. ФТТ 28, 2959 (1986).
- [7] V. Gudkov, A. Lonchakov, V. Sokolov, I. Zhevstovskikh, N. Gruzdev. Phys. Status Solidi B 242, R 30 (2005).
- [8] V.V. Gudkov, A.T. Lonchakov, V.I. Sokolov, I.V. Zhevstovskikh. Phys. Rev. B 73, 035 213 (2006).
- [9] K.A. Kikoin, V.N. Flerov. Transition metal impurities in semiconductor: electronic structure and physical properties. World Scientific, Singapore (1994). P. 163.
- [10] М.П. Кулаков, А.В. Фадеев, Н.Н. Колесников. Изв. АН СССР. Неорган. метериалы 22, 39 (1986).