Угловые зависимости пик-эффекта в монокристаллах $\mathsf{YBa}_2\mathsf{Cu}_3\mathsf{O}_x$

С Т.И. Арбузова, И.Б. Смоляк, С.В. Наумов

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

(Поступила в Редакцию 24 июня 1996 г.)

Исследованы угловые зависимости петель гистерезиса намагниченности при T = 77 К на серии монокристаллов YBCO, обладающих пик-эффектом. Показано, что возникновение пик-эффекта связано с пиннингом продольных вихрей вдоль *с*-оси на упорядоченных дефектах типа двойниковых границ. Поведение пик-эффекта в области промежуточных углов обусловлено анизотропным проникновением магнитного поля в квазидвумерные сверхпроводники. Для тонких кристаллов с разреженной структурой упорядоченных дефектов это может приводить к росту пик-эффекта за счет образования кинк-структуры вихря и "внутреннего" пиннинга поперечных сегментов на плоскостях Cu–O.

Одним из примеров необычного поведения высокотемпературных сверхпроводников в области критического состояния является так называемый пикэффект, который заключается в уширении петли гистерезиса намагниченности М в области промежуточных полей (выше поля проникновения H_p) и возникновении второго максимума в зависимостях критического тока от поля и температуры [1,2]. Причина этого явления в ВТСП-соединениях в данное время остается до конца невыясненной. В [2,3] было показано, что поле пик-эффекта Н_m коррелирует с полем, при котором в монокристалле возникает гранулярность, т.е. кристалл разбивается на несвязанные сверхпроводящие домены. Это косвенно указывает на то, что дефекты, связанные с пик-эффектом, должны быть топологически замкнутой системой областей со слабой сверхпроводимостью, переходящих в нормальное состояние в полях второго максимума в зависимости M(H). Было также показано, что система слабых связей, скорее всего, возникает в областях с недостатком кислорода [2]. Примером такой системы дефектов могут служить границы двойников, которые, по-видимому, обладают пониженным по сравнению с основной фазой содержанием кислорода и образуют замкнутую систему параллельных плоскостей. Эксперименты по декорированию вихревой решетки [4] показали, что эффективный пиннинг на границх двойников происходит при достаточно высоких температурах ($60 \,\mathrm{K} < T < T_c$). В ряде работ были проведены температурные измерения гистерезисных петель намагниченности для YBCO (см., например, [5]), а также было показано, что наиболее ярко пик-эффект проявляется также в области T > 60 К. Данные работ [6,7] для монокристаллов ҮВСО с разной плотностью двойниковых границ указывают на то, что возникновение пикэффекта связано с усилением пиннинга границами двойников из-за смягчения вихревой решетки перед ее плавлением (melting-переход).

В силу анизотропной структуры двойниковых границ пиннинг на них должен быть очень чувствительным в направлении внешнего магнитного поля. Для YBCO-кристаллов пик-эффект отсутствует при направлениях поля, близких к *ab*-плоскости [8–10]. Данные о поведении пик-эффекта в области промежуточных углов противоречивы. В [8] наблюдалось монотонное изменение петель гистерезиса при отклонении поля от направления *H* || (*ab*) к *H* || *c*. При этом положение второго максимума намагниченности сдвигалось в область меньших полей и ширина гистерезисной петли в области пик-эффекта достигала максимальной величины при Н || с. Сильная анизотропия сверхпроводящих параметров (длина когерентности ξ , глубина проникновения λ и др.) в ВТСП-соединениях может приводить к зависимости магнитной энергии от угла между направлением поля и кристаллографическими осями [11,12]. Это вызывает ряд особенностей проникновения магнитного потока в образец. Авторы [8] предполагают, что в области промежуточных углов φ между полем и осью $c \ (\varphi \leqslant 60^\circ)$ экранирующие токи циркулируют только параллельно плоскостям ab, и, следовательно, они наводятся за счет перпендикулярной плоскости ab компоненты внешнего поля $B\cos\varphi$. Величина намагниченности при этом определяется компонентой $M(\varphi = 0)/\cos \varphi$ и монотонно уменьшается с углом. В отличие от авторов [8] мы наблюдали на ряде кристаллов ҮВСО немонотонное изменение петель гистерезиса от угла φ [10]. Максимальное уширение гистерезисной петли в области пик-эффекта происходило при углах $5-20^{\circ}$ от направления $H \parallel c$. В отличие от авторов работы [8], в которой измерения проводились на массивных образцах размером порядка $2 \times 2 \times 1.5$ mm, мы в [10] исследовали довольно тонкие монокристаллы в виде пластинок толщиной 10-100 µm вдоль оси с. Причина расхождения данных, как кам кажется, может быть связана с особенностями пиннинга в тонких квазислоистых образцах, когда период дефектной подрешетки сравним с толщиной кристалла. В данной работе были исследованы угловые зависимости петель гистерезиса намагниченности для серии монокристаллов YBCO, обладающих пик-эффектом, с близкими значениями T_c и различной толщиной d. При обсуждении полученных результатов было предложено объяснение немонотонного поведения пик-эффекта для тонких монокристаллов.

1. Эксперимент

Монокристаллы ҮВСО были выращены методом из раствора в расплаве в системе CuO-BaO [13]. Были отобраны три образца в виде тонких прямоугольных пластинок с осью с, перпендикулярной плоскости, примерно одинакового размера, но различной толщины *d*. Толщина кристаллов оценивалась по измерениям массы из расчета теоретической плотности для YBCO. При осмотре поверхности *ab* кристаллов на поляризационном микроскопе хорошо проявлялась блочная структура двойниковых доменов, расположенных под уголом 45° к естественным граням образца. Температура сверхпроводящего перехода T_c определялась индуктивным методом в поле H < 0.1 Ое по резкому скачку восприимчивости в диамагнитной области. Измерения намагниченности проводились на вибрационном магнитометре при T = 77 K и в полях до 15 kOe. Изменение угла φ между полем H и осью с осуществлялось путем поворота держателя образца относительно оси магнита с точностью $\Delta \varphi \approx 2^{\circ}$. Ориентация образца на держателе характеризовалась углом α между проекцией поля на плоскость abи нормалью к границам двойникования (рис. 1). Все три монокристалла имели температуру СП-перехода $T_c = 93$ К и показывали пик-эффект при T = 77 К для положения Н || с. Значения поля пик-эффекта H_m для них были довольно высокими ($H_m \ge 13$ kOe). Из-за больших значений H_m трудно сделать вывод о поведении пик-эффекта при больших углах. Желательно исследовать кристалл с более низким значением H_m . Небольшим уменьшением содержания кислорода в образце можно снизить Т_с и сместить

аb

∝ = 45°

æ

Рис. 1. Ориентация образца для двух разных значений α . α (°): a - 45, b - 0. 1 -ось поворота, 2 -границы у двойников.

∝ = 0°

ъ

ось с

Данные угловых	измерений	И	некоторые	параметры	для
монокристаллов	$YBa_2Cu_3O_x$				

Номер образца	T_c , K	$d,\mu{ m m}$	α , deg	φ_{\max}, \deg	k	$r, \mu { m m}$
1 2 2	92 92 02		$45 \\ 45 \\ 0$	9.75 13 10 4	$1.106 \\ 1.353 \\ 1.1$	7.25 7.35 8.26
$\frac{2}{3}$	92 92	43 14	45	10.4 21	2.2	3.20 3.8

пие-эффект в область меньших полей при той же температуре измерения [14]. Поэтому после проведения угловых измерений петель гистерезиса один из монокристаллов (\mathbb{N} 1 в таблице) был отожжен на воздухе при $T = 550^{\circ}$ C с последующей закалкой в жидкий азот и повторно исследован.

2. Результаты

Для трех монокристаллов были сняты зависимости гистерезисных петель намагниченности от угла между внешним полем и осью $c~(-20 < \varphi < 90^\circ)$ при T = 77 К. На рис. 2 приведены петли гистерезиса для кристалла № 3 (см., таблицу) при некоторых углах *\varphi*. Как видно из этого рисунка, данный кристалл обладает ярко выраженным пик-эффектом намагниченности с полем второго максимума $H_m \ge 13$ kOe. Важной особенностью измеренного кристалла является то, что максимум пик-эффекта не наблюдается для положения Н || с. Для того чтобы выявить особенности поведения намагниченности в области кик-эффекта при наклонных полях, на рис. 3 приведена зависимость ширины гистерезисной петли ΔM от угла φ при значениях поля H = 13 kOe и 0. В обоих полях зависимость $\Delta M(\varphi)$ является симметричной относительно положения $H \parallel c$. Однако в отличие от кривой при H = 0 максимум величины ΔM в области пик-эффекта достигается при некотором промежуточном значении угла φ_{\max} . Подобные зависимости были получены для двух других кристаллов. Ориентация измеренных образцов на штоке соответствовала углу $\alpha = 45^{\circ}$ (рис. 1,*a*). Для количественной оценки возрастания намагниченности в области пикэффекта при повороте образца от $\varphi = 0$ до φ_{\max} мы использовали величину $k = \Delta M(\varphi_{\max}) / \Delta M(\varphi = 0),$ взятую при H = 13 kOe. Данные угловых экспериментов и некоторые харатеристики трех монокристаллов приведены в таблице. Из таблицы видно, что при одинаковой ориентации образцов $\alpha = 45^{\circ}$ наблюдается тенденция к увеличению угла максимального пик-эффекта φ_{\max} и параметра ${f k}$ с уменьшением толщины кристалла d. Максимальные величины $\varphi_{\rm max} = 21^\circ$ и ${f k} = 2.2$ получены для самого тонкого кристалла с $d = 14 \, \mu \text{m}$.

Рис. 2. Гистерезисные петли намагниченности монокристалла № 3 (см. таблицу) при T = 77 К и $\alpha = 45^{\circ}$ для разных углов φ между полем и осью *с.* φ (°): 1 — 0, 2 — 7.5, 3 — 21, 4 — 46, 5 — 60.

В случае пиннинга вихрей не на точечных, а на плоскостных дефектах типа границ двойников направление внешнего поля по отношению к пиннингующим дефектам должно характеризоваться не только углом φ между полем и осью **с**, но и углом α между нормалью к двойниковым границам и проекцией поля на плоскость *ab*. Изменение α может существенно повлиять на вид зависимостей $M(\varphi)$. Для кристалла № 2 дополнительно была снята угловая зависимость гистерезисной петли при ориентации $\alpha = 0^{\circ}$ (рис. 1,*b*). На рис. 4 приведены зависимости $\Delta M(\varphi)$ кристалла № 2 при H = 13 кОе для двух ориентаций: $\alpha = 45$ и 0°. Как видно из этого рисунка и таблицы, уменьшение α привело к уменьшению угла φ_{max} и параметра **k**.

С целью смещения пик-эффекта в область меньших полей и выяснения динамики его поведения при больших углах φ монокристалл № 1 (см. таблицу) был отожжен на воздухе при температуре 550°С. После отжига температура сверхпроводящего перехода составляла 85 К, а после пик-эффекта H_m равнялась 3 kOe при $H \parallel c$ и T = 77 K. На рис. 5 приведены петли гистерезиса при разных углах φ , а на рис. 6 зависимость $\Delta M(\varphi)$ в полях $H = H_m$ и 0 для отожженного кристалла. С увеличением угла φ максимум намагниченности в районе H_m сильно размывается, а само значение H_m сдвигается в сторону бо́льших полей. В отличие от исходного образца с высокой T_c для него при всех полях наблюдается монотонная зависимость ширины гистерезисной петли от угла с максимумом при положении $H \parallel c$, т.е. $\varphi_{\max} = 0$. Таким образом, не только толщина измеряемого образца, но и уменьшение T_c может приводить к монотонной угловой зависимости пикэффекта. Обе эти возможности обсуждаются далее.

Рис. 3. Угловые зависимости ширины петли гистерезиса ΔM образца № 3 при $\alpha = 45^{\circ}$ и T = 77 К для H = 13 kOe (1) и 0 (2).

Рис. 4. Угловые зависимости ширины петли гистерезиса ΔM монокристалла № 2 (см. таблицу) при H = 13 kOe и T = 77 K для двух ориентаций образца. $\varphi(^{\circ})$: 1 - 45, 2 - 0.

Рис. 5. Гистерезисные петли намагниченности монокристалла № 1 после отжига для разных углов φ между полем и осью c (T = 77 K). φ (°): 1 - 0, 2 - 30, 3 - 58, 4 - 70, 5 - 77.

Рис. 6. Угловые зависимости ширины петли гистерезиса ΔM монокристалла № 1 после отжига для $H = H_m$ (1) и 0 (2).

3. Обсуждение

Можно предположить, что, хотя в YBCO-кристаллах существует несколько типов пиннингующих дефектов, только один из них ответствен за пик-эффект. Симметрия угловых зависимостей пикэффекта относительно положения $H \parallel c$ указывает на то, что он обусловлен пиннингом на протяженных дефектах, лежащих вдоль оси c. Как уже отмечалось выше, такими дефектами в YBCO могут быть границы двойников. Анизотропия сверхпроводящих параметров в ВТСП-соединениях может приводить к сильному искажению вихревой решетки. Это проявляется в том, что магнитные вихри проникают в образец лишь вдоль направлений c и ab [15,16]. Магнитную индукцию в этом случае можно рассматривать как сумму двух независимых друг от друга компонент B_{\parallel} и B_{\perp} . Поскольку мы полагаем, что пик-эффект обусловлен пиннингом продольных вихрей на двойниковых плоскостях, положение поля второго максимума намагниченности H_m должно определяться компонентой $B_{\parallel} = B \cos \varphi$, а сам максимум ΔM при больших углах будет размываться за счет косинуса. На рис. 7 приведена зависимость $H_m(\varphi)$ для отожженного кристалла с $T_c = 85$ К. Сплошной линией представлена функция $f(\varphi) = H_m(\varphi = 0)/\cos \varphi$. Видно, что поле пик-эффекта неплохо описывается функцией $H_m(\varphi) = H_m(0)/\cos \varphi$. Этот результат согласуется с данными работы [8]. Однако в отличие от [8] абсолютное уменьшение ширины гистерезисной петли с углом φ нам не удалось описать только изменением вклада M_{\parallel} . В качестве иллюстрации на рис. 8 представлена угловая зависимость $\Delta M/\cos \varphi$ в полях H_m (кривая 1) и H = 0 (кривая 2). Как видно из этого рисунка, ширина петли не описывается простым законом $\Delta M(\varphi) = \Delta M(\varphi = 0) \cos \varphi$. Можно предположить, что в данном случае для описания величины М требуется учет перпендикулярной компоненты намагниченности М₁. В частности, плоская форма образца может способствовать усилению роли экранирующих токов, перпендикулярных плоскости ab [17].

Приведенное выше обсуждение результатов относилось к образцу с монотонной угловой зависимостью пик-эффекта и $\varphi_{\max} = 0$. Данные, полученные нами на трех тонких кристаллах с высокими $T_c = 93$ K, нельзя объяснить только пиннингом на двойниковых

Рис. 7. Угловая зависимость поля пик-эффекта H_m для монокристалла № 1 после отжига. Сплошная линия соответствует функции $f(\varphi) = H_m(\varphi = 0)/\cos \varphi$.

Рис. 8. Угловые зависимости величины $\Delta M/\cos \varphi$ для монокристалла № 1 после отжига для $H = H_m(1)$ и 0 (2).

границах вдоль оси с. В частности, остается неясным увеличение намагниченности в области пик-эффекта при промежуточном значении угла $\varphi = \varphi_{\text{max}}$. Мы полагаем, что для объяснения этого явления нужно учесть особенности пиннинга поперечной компоненты приложенного поля в квазислоистых соединениях. Конфигурация поля внутри таких материалов при промежуточных углах может быть представлена в виде изломанной структуры магнитных вихрей (так называемая кинк-структура [12]). В этом случае вихрь будет состоять из продольных сегментов, соединенных поперечными сегментами, лежащими в плоскости ab. Оптимальные условия образования кинк-структуры в области малых φ будут реализовываться, если продольные компоненты вихря пиннингуются на соседних дефектах. Пример образования изломанного вихря при пиннинге продольных сегментов на границах двойников проиллюстрирован на рис. 9. Покажем теперь, что в случае возникновения пиннинга поперечных сегментов изломанного вихря возможно эффективное усиление намагниченности. В [12,16,18] показано, что в ВТСП-соединениях возможен сильный "внутренний" пиннинг вихрей в направлении ab на сверхпроводящих плоскостях Cu-O из-за малой величины ξ вдоль оси с. Геометрии "внутреннего" пиннинга соответствуют текущие в плоскости *ab* критические токи $J^{ab,ab}$, которые могут существенно превосходить текущие также в плоскости *ab* токи *J^{ab,c}*, обусловленные пиннингом вихрей вдоль оси с [16,19]. Первый индекс для компоненты критического тока определяет его направление, а второй — направление магнитного поля. Согласно модифицированной модели Бина для анизотропных сверхпроводников и условию непрерывности протекания таков, ширину гистерезисной петли намагниченности для прямоугольного образца в поле, перпендикулярном плоскости, можно определять как $\Delta M = J_c l_2/20(1 - J_{c1} l_2/3 J_{c2} l_1)$, где l_1 и l_2 — длина стороны прямоугольника, а J_{c1} и J_{c2} — плотности критического тока в направлениях l_1 и l_2 соответственно [20]. Схема распределения токов в плоскости приведена на рис. 10, а. В случае квадратного образца YBCO с осью с, перпендикулярной плоскости, и изотропности токов $J_{c1} = J_{c2} = J^{ab,c}$ для положения $H \parallel c$ получим $\Delta M \sim J^{ab,c} l/30$ и распределение токов, изображенное на рис. 10, b. Возникновение поперечных запиннингованных сегментов и, следовательно, компоненты тока $J^{ab,ab}$ при небольших углах φ приведет к перераспределению токов в плоскости *ab.* Пример протекания токов в скошенных полях при $J^{ab,ab} > J^{ab,c}$ приведен на рис. 10,c. В этом случае возможно эффективное увеличение проекции магнитного момента на ось с и общий рост намагниченности. Действительно, если пренебречь изменением проекции поля H на ось c и вкладом $J^{c,ab}$ при малых углах φ , то ширину гистерезисной петли приблизительно можно записать как $\Delta M \sim J^{ab,c} l/20(1 - J^{ab,c}/3J^{ab,ab}),$ что больше $\Delta M \sim J^{ab,c} l/30$ для $H \parallel c$.

Если изломанную нить аппроксимировать прямым идеальным вихрем, направленным вдоль внешнего поля, то образование кинк-структуры соответствует случаю, когда идеальный вихрь одновременно касается краев двух соседних границ (рис. 9). В этом случае эффективный угол определяется следующим образом.

$$\varphi_{\max} = \operatorname{arctg} \left[r / (d \cos(\varphi)) \right],$$
 (1)

где r — среднее расстояние между границами двойников плоскости ab, d — толщина кристалла вдоль оси c. Из (1) видно, что при заданном r величина φ_{\max} уменьшается с увеличением d и уменьшением α . Расстояние между двойниковыми границами зависит от условий синтеза и может достигать нескольких микрон (см., например, [21]). В таблице для трех измеренных монокристаллов приведены полученные по формуле (1) оценки расстояний r, которые являются разумными величинами. Близкие значения rдля образца № 2 при разных α качественно подтвер-

Рис. 9. Пример образования изломанного магнитного вихря, запиннингованного на двух соседних двойниковых границах. 1 — продольный сегмент вихря, 2 — кинк, 3 — границы двойников.

Рис. 10. Схема распределения экранирующих токов на плоскости для образцов прямоугольной формы. a — общий случай при поле H, перпендикулярном плоскости, b, c — квадратный монокристалл YBCO при поле H, перпендикулярном ($\varphi \neq 0$) плоскости ab соответственно.

ждают правильность приведенной схемы пиннинга на границах двойников в области пик-эффекта.

Можно предположить, что эффективность усиления намагниченности за счет "внутреннего" пиннинга зависит от соотношения длин поперечного и продольного сегментов, которое определяется углом между полем и осью с. Из таблицы и рис. З видно, что параметр k, характеризующий усиление пик-эффекта в наклонных полях, возрастает с увеличением φ_{\max} . Отсутствие пиков намагниченности, соответствующих удвоенному, утроенному и т.д. периодам r, может быть связано как с уменьшением вклада M_{\parallel} при повороте на достаточно большой угол, так и с разбиением кристалла на несвязанные домены при переходе двойниковых границ в нормальное состояние в полях порядка H_m . В последнем случае образование кинквихря будет ограничено внутренней областью сверхпроводящего монодомена.

Таким образом, немонотонное поведение зависимости $\Delta M(\varphi)$ в области пик-эффекта определяется по крайней мере двумя характеристиками образца: d и r. Для достаточно толстых монокристаллов ($d \ge 100 \,\mu\text{m}$) с плотной системой двойников ($r \le 1 \,\mu\text{m}$) величина φ_{max} может быть очень близкой к значению $\varphi = 0$. Расхождение литературных данных, возможно, связано также с разным качеством монокристаллов. Как мы показали, после отжига монокристалла № 1, пришедшего к небольшому уменьшению T_c , была получена монотонная зависимость $\Delta M(\varphi)$ при всех полях (рис. 5, 6). Это можно объяснить уменьшением силы "внутреннего" пиннинга при изменении сверхпроводящих параметров. Действительно, из-за малого расстояния между плоскостями Сu–О пиннинг на них должен быть очень чувствительным к размерам вихря. При азотных температурах, близких к температуре СП-перехода, даже незначительное уменьшение T_c может привести и существенному увеличению параметров ξ_c и λ_c и, соответственно, размера магнитного вихря, так что пиннинг на слоях Сг–О ослабнет или исчезнет совсем.

Список литературы

- R.B. van Dover, E.M. Gregory, L.F. Schneemeyeyer, J.W. Mitchell, K.V. Rao, R. Puzniak, J.W. Waszczak. Nature 342, 55 (1989).
- [2] M. Daeumling, J.M. Seuntjens, D.C. Larbalestier. Nature 346, 332 (1990).
- [3] M.S. Osofsky, J.L. Cohn, E.F. Skelton, M.M. Miller, R.J. Soulen, Jr, S.A. Wolf, T.A. Vanderah. Phys. Rev. B 45, 9, 4916 (1992).
- [4] Л.Я. Винников, Л.А. Гуревич, Г.А. Емельяненко, Ю.А. Осипьян. Письма в ЖЭТФ 47, 109 (1988).
- [5] L. Krusin-Elbaum, L. Civale, V.M. Vinokur,
 F. Holtzberg. Phys. Rev. Lett. 69, 15, 2280 (1992).
- [6] W.K. Kwok, J.A. Fendrich, S.Fleshler, U. Welp, G.W. Crabtree. Critical currents in superconductors. Proc. of the 7th Int. workshop (Alpbach, Austria 1994) / Ed. H.W.Weber (1994). C. 15.
- [7] W.K. Kwok, J.A. Fendrich, C.J. van der Beek, G.W. Crabtree. Phys. Rev. Lett. **73**, 19, 2614 (1994).

- [8] P. Fischer, R. Busch, H.W. Neumuller, G. Ries, H.F. Braun. Critical currents. Proc. of the 6th Int. workshop. Cambridge, England (1991).
- [9] J.G. Ossandon, J.R. Thompson, D.K. Christen, B.C. Sales, H.R. Kerchner, J.O. Thomson, Y.R. Sun, K.W. Lay, J.E. Tkaczyk. Phys. Rev. B 45, 21, 12534 (1992).
- [10] Т.И. Арбузова, И.Б. Смоляк, С.В. Наумов, А.А. Самохвалов. СФХТ **5**, *4*, 631 (1992).
- [11] V.K. Hogan. Phys. Rev. B 38, 7049 (1988).
- [12] B.I. Ivlev, Y.N. Ovchinnikov, V.L. Pokrovsky. Mod. Phys. Lett. B 5, 1, 73 (1991).
- [13] Н.М. Чеботаев, А.А. Самохвалов, С.В. Наумов, В.А. Костылев, Б.А. Гижевский, Т.И. Арбузова, И.Б. Бобылев. Всесоюз. совещ. "Физикохимия и технология ВТСП-материалов" (М. 1988). Наука, М. (1989). С. 79.
- [14] Г.И. Арбузова, И.Б. Смоляк, С.В. Наумов, А.А. Самохвалов. СФХТ 6, 9, 1817 (1993).
- [15] R.G. Mints. Mod. Phys. Lett. **B 3**, 5, 405 (1989).
- [16] M. Tachiki, S. Takahasni. Solid State Commun. 70, 291 (1989); 72, 1083 (1989).
- [17] M. Oussena, P.A.J. de Groot, R. Gagnon, L. Taillefer. Phys. Rev. B. In press.
- [18] B. Roas, L. Schultz, G. Saemann-Ischenko. Phys. Rev. Lett. 64, 4, 479 (1990).
- [19] D.C. Cronemeuer, T.R. McGuire, A.P. Malozemoff, F. Holtzberg, R.J. Gambino, J.W. Conner, M.W. McElfresh. In: Proc. Int. Conf. on Transport Properties of Superconductors (ICTPC'90)/ Ed. R.Nicolsky. Rio de Janeiro, Brazil (1990). V. 25. P. 11.
- [20] E.M. Gyurgy, R.B. van Dover, K.A. Jackson, L.F. Shneemeuer, J.V. Waszczak. Appl. Ohys. Lett. 55, 3, 283 (1989).
- [21] S. Nakahara, G.J. Fisanick, M.F. Yan, R.B. van Dover, T. Boone, R. Moore. J. Cryst. Growth 85, 639 (1987).