Теплоемкость кристаллов LiB₃O₅ в интервале температур 80–300 К

© А.У. Шелег, Т.И. Декола, Н.П. Теханович, А.М. Лугинец

Институт физики твердого тела и полупроводников Академии наук Белоруссии, 220072 Минск, Белоруссия

(Поступила в Редакцию 11 ноября 1996 г.)

Методом адиабатического калориметра проведены измерения теплоемкости кристаллов LiB₃O₅. По экспериментальным данным теплоемкости рассчитаны изменения термодинамических функций: энтропии, энтальпии и приведенной энергии Гиббса, а также температуры Дебая $\Theta_D(T)$ кристаллов LiB₃O₅.

Кристаллы трибората лития LiB₃O₅ наряду с β -боратом бария, β -BaB₂O₄, являются новыми нелинейными оптическими материалами, представляющими значительный практический интерес. Эти кристаллы обладают большой лучевой стойкостью на пробой, широким температурным синхронизмом и проявляют высокую нелинейность оптических свойств, что делает их перспективными для использования в качестве преобразователей частоты лазерного излучения в ультрафиолетовой области [1].

Многие оптические свойства кристаллов LiB_3O_5 , характеризующие их как преобразователи лазерного излучения, достаточно хорошо изучены [2–4]. Поскольку эти кристаллы используются в качестве преобразователей в источниках мощного лазерного когерентного излучения, не менее важно знать их термодинамические характеристики, сведения о которых в литературе отсутствуют.

В настоящей работе приводятся результаты измерения теплоемкости монокристаллов LiB₃O₅ в области температур 80–300 К и рассчитанные по ним значения изменения термодинамических функций в зависимости от температуры.

Для синтеза монокристаллов LiB₃O₅ использовался расплав состава Li₂O · 3B₂O₃ с избытком B₂O₃ для предотвращения кристаллизации тетрабората лития Li₂B₄O₇. Кристаллы выращивались на затравку, полученную методом спонтанного зарождения, в поверхностном слое раствора-расплава с вытягиванием в процессе роста. Скорость вытягивания составляла 0.042 mm/h при непрерывном снижении температуры. Скорость вращения кристаллодержателя изменялась от 8 min⁻¹ при минимальных градиентах температур до 20 min⁻¹ при максимальных градиентах температур. Для выращивания кристаллов использовалась специальная печь электросопротивления с нагревательными элементами из SiC и автоматической регулировкой температуры. Необходимая конфигурация теплового поля в растворе-расплаве формировалась посредством разработанной конструкции рабочей камеры печи и введением дополнительных экранов. Послеростовая термическая обработка проводилась в вакуумной установке в атмосфере кислорода с парциальным давлением, находящимся в интервале 0.2-5.0 atm. Температура отжига образцов зависела от давления кислорода и колебалась в интервале 570-870 К. Для измерений теплоемкости использовались образцы кристаллов LiB₃O₅ с наилучшими оптическими и нелинейнооптическими характеристиками.

Измерения теплоемкости проводились в вакуумном адиабатическом калориметре при дискретном вводе тепла через интервалы температур 1.0–2.6 К. Масса монокристаллических образцов составляла 6.8043 g. Нагрев при измерениях проводился со скоростью 0.03–0.09 К/min. Погрешность измерения теплоемкости, оцененная по образцовой мере 1 разряда из кварца марки КВ, не превышала 0.3 % в исследуемом интервале температур.

Обработка экспериментальных значений теплоемкости проводилась путем аппроксимации полиномом

$$C = \sum_{i=0}^{5} A_i T^i.$$

На рис. 1 представлена кривая температурной зависимости теплоемкости трибората лития. Как видно из этого рисунка, изменение теплоемкости в зависимости от температуры происходит плавно, не достигая насыщения при комнатной температуре.

На основе полученных экспериментальных данных из сглаженной кривой $C_p(T)$ методом численного интегрирования были рассчитаны изменения термодинамических функций LiB₃O₅: энтропии S(T), энтальпии H(T) и приведенной энергии Гиббса $\Phi(T)$. В таблице приведены

Сглаженные значения теплоемкости и изменение термодинамических функций ${\rm LiB_3O_5}$

<i>Т</i> ,К	$C_p(T),$ J(K · mol)	$S(T) - S_{80},$ J/(K · mol)	$\begin{array}{l} \Phi(T) - \Phi_{80}, \\ J(\mathrm{K} \cdot \mathrm{mol}) \end{array}$	$\begin{array}{c} H(T) - H_{80}, \\ J/\text{mol} \end{array}$
80.0	24.74	0.000	0.000	0.000
100.0	34.51	6.545	1.019	592.6
120.0	44.52	13.71	2.892	1383
140.0	54.50	21.31	5.321	2373
160.0	64.26	29.22	8.228	3561
180.0	73.66	37.33	11.57	4940
200.0	82.60	45.55	14.75	6503
220.0	91.07	53.82	18.28	8239
240.0	99.08	62.09	22.03	10141
260.0	106.74	70.32	25.66	12199
280.0	114.18	78.50	29.52	14408
298.15	120.93	86.36	33.11	16327
300.0	121.63	86.64	33.53	16766

Рис. 1. Температурная зависимость теплоемкости LiB₃O₅.

Рис. 2. Температурная зависимость температуры Дебая Θ_D кристалла LiB₃O₅.

сглаженные значения теплоемкости и рассчитанные по ним изменения термодинамических функций.

Одним из важных динамических параметров твердых тел является температура Дебая $\Theta_D(T)$, которая характеризует силы межатомного взаимодействия в кристалле. Представляло интерес определить ее из полученных экспериментальных значений теплоемкости $C_p(T)$ для кристалла LiB₃O₅.

Вследствие малого различия между значениями $C_p(T)$ и $C_v(T)$ в исследуемом интервале температур для определения температуры Дебая $\Theta_D(T)$ использовались экспериментальные значения теплоемкости $C_p(T)$, которые сопоставлялись со значениями $C_{\nu}(\Theta/T)$, полученными по теории Дебая и приведенными в виде таблиц [5]. Рассчитанная таким образом температурная зависимость $\Theta_D(T)$ приведена на рис. 2. Как видно из этого рисунка, наблюдается плавное изменение и достаточно сильное увеличение $\Theta_D(T)$ с ростом температуры. Однако следует иметь в виду, что, поскольку в кристалле LiB₃O₅ наблюдается сильная анизотропия коэффициента линейного расширения [6], приведенные значения $\Theta_D(T)$ необходимо рассматривать как некоторые эффективные величины. Характеристическая температура Дебая $\Theta_D(T)$ кристалла LiB₃O₅ тоже будет зависеть от кристаллографического направления, но для установления анизотропии $\Theta_D(T)$ ее значения необходимо определять из рентгенографических данных, а не из теплоемкости. Тем не менее полученные достаточно высокие значения характеристической температуры $\Theta_D(T)$ свидетельствуют о том, что характер химической связи межатомного взаимодействия в кристаллах LiB₃O₅ является преимущественно ковалентным.

Список литературы

- [1] Ch. Chen, Y. Wu, Jaing et al. J. Opt. Amer. B6, 4, 616 (1989).
- [2] Ch. Chen, J. Cryst. Growth 99, 790 (1950).
- [3] R.H. French, J.W. Ling, F.S. Ohuchi, C.T. Chen. Phys. Rev. B44, 16, 8496 (1991).
- [4] J.T. Lin. Opt. Quant. Electron. 22, 283 (1990).
- [5] E.S. Gopal. Specific heats at low temperature. N. Y. (1966). 240 p.
- [6] W. Lin, G. Dai, Q. Huang, A. Zhen, J. Liang. J. Phys. D: Appl. Phys. 23, 1073 (1990).