Моделирование структурных, электронных и магнитных свойств бороцементитов Fe₃C_{1-*x*}B_{*x*}

© Н.И. Медведева, И.Р. Шеин, О.Ю. Гутина, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620041 Екатеринбург, Россия

E-mail: medvedeva@ihim.uran.ru

(Поступила в Редакцию 11 апреля 2007 г.)

В рамках неэмпирического метода функционала электронной плотности выполнен анализ структурных, электронных, магнитных свойств и энтальпии образования для бороцементитов железа $Fe_3C_{1-x}B_x$ при x = 0, 0.25, 0.5, 0.75 и 1. Установлено, что параметр орторомбической решетки *а* линейно возрастает, а параметры *b* и *с* убывают с увеличением концентрации бора. Плотность состояний на уровне Ферми меняется слабо, а основные изменения в зонной структуре происходят в области дна валентных полос. Магнитный момент на атомах железа и полная намагниченность и стабильность фаз $Fe_3C_{1-x}B_x$ линейно возрастают с ростом концентрации бора.

Работа поддержана Российским фондом фундаментальных исследований (грант № 05-03-32021) и Фондом ОАО "ММК", ИТЦ "Аусферр" и ФНиО "Интелс" (грант № 41-06-01).

PACS: 71.15.Mb, 71.20.Be

1. Введение

Большое внимание, уделяемое влиянию примеси бора на физико-химические свойства цементита Fe₃C, определяется исключительно важной ролью системы Fe-C-B в металлургии и материаловедении. Введение бора в состав промышленных легированных сталей используется для увеличения их прочности, прокаливаемости и повышения порога хладноломкости. Присутствие бора подавляет выделение феррита в аустенитовых сталях во время термообработки. Бор имеет высокую нейтронную поглотительную способность, и сталь с добавлением бора используется в ядерной промышленности. Боридные покрытия обладают высокой твердостью и износостойкостью, которая определяется наличием твердого раствора (TP) на основе α -Fe, а также ряда карбидных (Me_3C) и боридных (MeB, Me₂B, Me₂₃B₆) выделений. Установлено, что бор хорошо растворяется в цементите Fe₃C, являющемся одним из основных компонентов углеродистых сталей и чугуна [1,2]. Растворимость бора в цементите существенно зависит от температуры: бор может заместить примерно до 80% углерода при 1000°С и около 60% при 600°C, образуя так называемые бороцементиты — $Fe_3C_{0.2}B_{0.8}$ и $Fe_3C_{0.2}B_{0.8}$ соответственно [1].

Несмотря на высокую технологическую значимость цементита, влияние примеси бора на его кристаллическую структуру и электронные свойства остается неизученным. Известно, что соединение Fe₃C является метастабильным и легко распадается с выделением графита (так называемый процесс графитизации), однако борид Fe₃B стабилен, поэтому важным является изучение стабильности цементита в зависимости от концентрации бора.

В настоящей работе *ab initio* методом в рамках функционала электронной плотности проведено тео-

ретическое исследование концентрационных изменений структурных, электронных, энергетических и магнитных характеристик бороцементитов — непрерывного ряда твердых растворов $Fe_3C_{1-x}B_x$ — в зависимости от содержания С/В.

2. Метод расчета и структура

Расчеты Fe₃C_{1-*x*}B_{*x*} (*x* = 0, 0.25, 0.5, 0.75 и 1) выполнены методом проекционных присоединенных волн (projector augmented-wave, PAW) [3] с использованием пакета программ Vienna *Ab initio* Simulation Package (VASP) в спин-поляризованном варианте. Обобщенное градиентное приближение (generalized gradient approximation, GGA) использовалось для обменно-корреляционного члена. Интегрирование в зоне Бриллюэна проводилось по 6 × 6 × 6 *k*-точкам, а кинетическая энергия обрезания (cutoff) выбрана равной 400 eV. Оптимизация структуры проводилась минимизацией сил с параметром cutoff 5 meV/Å.

Цементит кристаллизуется в орторомбической решетке, пространственная группа *Pbnm*, Z = 4. Элементарная ячейка содержит четыре атома углерода и два типа атомов железа, занимающих неэквивалентные позиции: восемь атомов железа находятся в общих (general, Fe^g) позициях и четыре атома железа в специальных (special, Fe^s) позициях. Каждый атом углерода находится в тригонально-призматическом окружении атомов железа [Fe^s₂Fe^g₄] со средним расстоянием Fe–C~ 2.018 Å [4].

3. Результаты и обсуждение

3.1. Структурные свойства. Как следует из данных табл. 1, для Fe_3C и Fe_3B расчетные значения параметров решетки (a, b, c) и объемов ячеек (V) хорошо

	Fe ₃ C	Fe ₃ C _{0.75} B _{0.25}	Fe ₃ C _{0.5} B _{0.5}	Fe ₃ C _{0.25} B _{0.75}	Fe ₃ B
а	5.058 (5.082)	5.126	5.218	5.315	5.397 (5.433)
b	6.703 (6.733)	6.670	6.652	6.629	6.650 (6.656)
с	4.506 (4.521)	4.467	4.438	4.407	4.363 (4.454)
V	152.77	152.73	154.05	155.27	156.59

Таблица 1. Оптимизированные параметры решетки (Å) и объем элементарной ячейки (Å^β) для бороцементитов Fe₃C_{1-x}B_x

Примечание. В скобках для Fe₃C приведены экспериментальные данные работы [5], для Fe₃B — [6].

согласуются с имеющимися экспериментальными данными. Расчеты показали, что для $Fe_3C_{1-x}B_x$ с ростом соотношения B/C (т.е. при последовательном замещении атомов углерода с малым атомным радиусом (0.77 Å) атомами бора с большим радиусом (0.91 Å)) объем ячейки бороцементита возрастает. При этом, однако, обнаружено, что параметры решетки $(a, b \ u \ c)$ меняются противоположным образом: с ростом концентрации бора параметр решетки a линейно растет, а параметры $b \ u \ c$ уменышаются. Наиболее существенно меняется параметр a (на 6.7% при переходе от Fe₃C к Fe₃B), изменение параметров b (0.8%) и c (3.2%) значительно меньше, т.е. увеличение объема в ряду Fe₃C \rightarrow Fe₃C_{1-x}B_x \rightarrow Fe₃B определяется ростом параметра a.

3.2. Электронные свойства. Полные плотности электронных состояний $Fe_3C_{1-x}B_x$ приведены на рис. 1. Видно, что валентная зона Fe_3C (в согласии с предшествующими расчетами [7–11]) включает три подполосы *A*, *B* и *C*, где нижняя полоса *A* образована 2*s*-состояниями углерода, полоса *B* содержит в основном вклады C2p-состояний. Верхний край валентной зоны (полоса *C*) образован преимущественно Fe3*d*-состояниями. Гибридизация Fe3*d*-C2*p*-состояний достаточно мала, о чем свидетельствуют малые вклады C2*p*- и Fe3*d*-состояний в области полос *C* и *B* соот-

Рис. 1. Полные плотности состояний для $Fe_3C_{1-x}B_x$. Сплошная линия — состояния со спином вверх, пунктирная — состояния со спином вниз.

6 Физика твердого тела, 2007, том 49, вып. 12

ветственно. Уровень Ферми ($E_{\rm F}=0$) расположен между почти полностью занятыми 3*d*-состояниями со спином вверх ($3d^{\uparrow}$) и частично свободными 3*d*-состояниями со спином вниз ($3d^{\downarrow}$). Магнитные моменты (MM) на атомах железа равны 1.96 и 1.86 $\mu_{\rm B}$ (на атомах Fe^s и Fe^s соответственно), а на атомах углерода — 0.12 $\mu_{\rm B}$.

При замещении углерода бором в Fe₃C_{1-x}B_x появляется дополнительная полоса А' в области от -9.5 до -7.5 eV (рис. 1), которая образована B2s-состояниями. Состояния В2р смещены в область более высоких энергий по сравнению с 2*p*-состояниями углерода. С увеличением концентрации бора полоса А' закономерно уширяется, а более низкоэнергетическая C2s-полоса (A) соответственно сужается. Одновременно происходит изменение относительных вкладов С2р-/В2р-состояний в область валентной полосы. Поскольку B2p-состояния располагаются в области Fe3d-полосы C, рост их концентрации приводит к увеличению перекрывания Fe3d- и B2p-состояний, т.е. к усилению Fe3d-2pгибридизации при переходе от карбида к бориду. Для всех составов $Fe_3C_{1-x}B_x$ уровень Ферми расположен в области почти заполненных Fe3d⁺-состояний и в локальном минимуме незаполненных Fe3pсостояний, в результате общая плотность состояний на уровне Ферми в ряду $Fe_3C \rightarrow Fe_3C_{1-x}B_x \rightarrow Fe_3B$ меняется незначительно, линейно возрастая от 0.75 (Fe₃C) до 0.80 states/eV-atom (Fe₃B) в основном за счет вкладов от Fe3*d*[↓]-состояний.

Проведенные расчеты позволяют интерпретировать мессбауэровские данные [12,13], согласно которым при замещении в составе Fe₃C углерода бором изомерный сдвиг на ядрах железа в системе Fe₃C_{1-x}B_x слабо зависит от концентрации бора. Как известно, изомерный сдвиг определяется плотностью s-электронов на ядре и зависит от заселенности как 3d-, так и 4s-валентных состояний за счет эффекта экранирования. Однако изменения этих заселенностей влияют на изомерный сдвиг различным образом. Уменьшение заселенности 3*d*-состояний (q^{3d}) приводит к уменьшению изомерного сдвига, а уменьшение заселенности 4s-состояний (q^{4s}) , наоборот, обусловливает рост величины изомерного сдвига. Полученные усредненные заселенности Fe3d-состояний линейно уменьшаются с ростом x, и разность между значениями для Fe₃B и Fe₃C по нашим данным составляет $\Delta q^{3d} = -0.057 \, e \, / {
m atom},$ в то время как $\Delta q^{4s} = +0.018 \, e/\text{atom. C}$ учетом больше-

Параметры фаз	Fe ₃ C	$Fe_3C_{0.75}B_{0.25}$	$Fe_3C_{0.5}B_{0.5}$	$Fe_3C_{0.25}B_{0.75}$	Fe ₃ B
MM [C]	-0.12	-0.12	-0.12	-0.12	—
MM [B]	—	-0.14	-0.15	-0.15	-0.16
$MM [Fe^s]$	1.96	2.04	2.15	2.22	2.28
	(1.99)				(2.06)
$MM [Fe^g]$	1.86	1.89	1.90	1.91	1.94
	(1.95)				(1.89)
М	22.25	22.75	23.23	23.64	24.10
ΔH	+0.22	-0.06	-0.33	-0.59	-0.87
$MM [Fes]$ $MM [Feg]$ $MM [Feg]$ M ΔH	$ \begin{array}{r} 1.96 \\ (1.99) \\ 1.86 \\ (1.95) \\ 22.25 \\ +0.22 \end{array} $	2.04 1.89 22.75 -0.06	2.15 1.90 23.23 -0.33	2.22 1.91 23.64 -0.59	$\begin{array}{c} -0.10 \\ 2.28 \\ (2.06) \\ 1.94 \\ (1.89) \\ 24.10 \\ -0.87 \end{array}$

Таблица 2. Усредненные атомные магнитные моменты (MM, $\mu_{\rm B}$), полная намагниченность M ($\mu_{\rm B}$ /form.unit) и энтальпия образования ΔH (eV/form.unit) для цементитоподобных фаз в системе

го экранирующего эффекта 4*s*-электронов постоянство изомерного сдвига [12,13] может быть объяснено компенсирующим эффектом, обусловленным ростом заселенности 4*s*-состояний.

3.3. Стабильность и химическая связь в бороцементитах. Относительную стабильность Fe₃C, Fe₃B и TP Fe₃C_{1-x}B_x оценивали по изменению энтальпий их образования (ΔH), рассчитанных на основе полных энергий (E_{tot}) цементитопообных фаз E_{tot} (Fe₃C, Fe₃B и TP Fe₃C_{1-x}B_x), ОЦК-железа E_{tot} (Fe), графита E_{tot} (C) и α -бора E_{tot} (B) как

$$\Delta H^{\text{Fe}_3\text{C},\text{Fe}_3\text{B}} = E_{\text{tot}}(\text{Fe}_3\text{C},\text{B}) - \{3E_{\text{tot}}(\text{Fe}) + E_{\text{tot}}(C,B)\},$$
$$\Delta H^{\text{Fe}_3\text{C}_{1-x},\text{B}_x} = E_{\text{tot}}(\text{Fe}_3\text{C}_{1-x},\text{B}_x) - \{3E_{\text{tot}}(\text{Fe}) + (1-x)E_{\text{tot}}(C) + xE_{\text{tot}}(\text{B})\}.$$

Из табл. 2 видно, что $\Delta H^{\text{Fe}_3\text{C}} > 0$, что согласуется с наблюдаемым метастабильным поведением Fe₃C при нормальных условиях [14]. Для состава бороцементита Fe₃C_{0.75}B_{0.25} энтальпия образования становится отрицательной; дальнейший рост *x* приводит к увеличению абсолютной величины $\Delta H^{\text{Fe}_3\text{C}_{1-x}\text{B}_x}$, которая принимает максимальное значение для Fe₃B ($\Delta H^{\text{Fe}_3\text{B}} = -0.87 \text{ eV/form.unit}$). Как известно [15], в отличие от карбида борид Fe₃B является стабильной фазой. Согласно нашим расчетам, зависимость $\Delta H(x)$ линейная, а смена знака ΔH происходит примерно при *x* = 20%.

Установленное концентрационное изменение ΔH бороцементитов может быть объяснено с учетом особенностей перестройки межатомных взаимодействий в ряду Fe₃C \rightarrow Fe₃C_{1-x}B_x \rightarrow Fe₃B. Из представленных на рис. 2 карт зарядовой плотности видно, что ковалентные связи Fe–B являются более сильными, чем связи Fe–C. Поскольку с ростом концентрации бора объем ячейки возрастает и происходит ослабление Fe–Fe-связей, общая стабилизация бороцементитов при росте содержания бора обусловлена увеличением числа сильных ковалентных Fe–B-связей. Этот вывод следует также из анализа рассчитанных нами плотностей состояний (рис. 1), демонстрирующих в ряду Fe₃C \rightarrow Fe₃C_{1-x}B_x \rightarrow Fe₃B рост

плотности состояний в области от -3.5 до -2.5 eV, что свидетельствует об усилении d-p-гибридизации.

Рис. 2. Карты зарядовой плотности в плоскости $C(B)-Fe^{g}-C(B)$ для $Fe_{3}C(a)$, $Fe_{3}C_{0.75}B_{0.25}$ (*b*) и $Fe_{3}B$ (*c*).

2195

3.4. Магнитные свойства. В табл. 2 представлены ММ атомов углерода, бора и железа в неэквивалентных позициях, а также полная намагниченность $Fe_3C_{1-x}B_x$. Видно, что углерод и бор имеют незначительные индуцированные ММ, возникающие из-за поляризации 2*p*-состояний за счет ковалентных связей Fe-C(B), причем MM атомов бора оказываются выше, чем ММ атомов углерода (вследствие более сильной орбитальной гибридизации B-Fe в сравнении с C-Fe). С ростом концентрации бора ММ на атомах железа возрастают, причем более существенный рост моментов наблюдается на атомах Fe^s , чем на атомах Fe^g . Как видно из табл. 2, общая намагниченность бороцементитов в ряду $Fe_3C \rightarrow Fe_3C_{1-x}B_x \rightarrow Fe_3B$ линейно растет. Расчеты показывают, что за увеличение ММ и намагниченности с ростом х ответственны два фактора: уменьшение заселенности Fe3d-состояний (снижение плотности состояний в области от $-2 \, \text{eV}$ до E_{F}) и рост объема элементарной ячейки цементита.

В целом, из проведенных расчетов следует, что в ряду бороцементитов $Fe_3C \rightarrow Fe_3C_{1-x}B_x \rightarrow Fe_3B$ объем элементарной ячейки возрастает за счет роста параметра решетки *a*, тогда как параметры *b* и *c* уменьшаются. Основные изменения электронного спектра происходят в области дна валентной зоны и связаны с перераспределением вкладов С2р/В2р-состояний в область полосы Fe3d-состояний, тогда как плотность состояний на уровне Ферми меняется незначительно. Установлено, что постоянство изомерного сдвига для различных концентраций бора обусловлено компенсацией вкладов, связанных с уменьшением заселенности 3d- и ростом заселенности 4s-состояний железа. С возрастанием концентрации бора происходит стабилизация бороцементитов, и вблизи состава Fe₃C_{0.80}B_{0.20} наблюдается смена знака энтальпии образования. ММ на атомах железа и полная намагниченность возрастают с ростом концентрации бора, и индуцированные ММ на атомах бора выше, чем на атомах углерода, за счет более сильной орбитальной *p*-*d*-гибридизации.

Список литературы

- [1] M.E. Nicholson. Trans. Met. Soc. 209, 1 (1957).
- [2] I.S. Koifman, V.A. Egorshina, G.V. Laskova. Met. Sci. Heat Treat. 2, 141 (1969).
- [3] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999).
- [4] E.J. Fasiska, G.A. Jeffry. Acta Cryst. 19, 463 (1965).
- [5] I.G. Wood, L. Vocadlo, K.S. Knight, D.P. Dobson, W.G. Marshall, G.D. Price, J. Brodholt. J. Appl. Cryst. 37, 82 (2004).
- [6] S. Nagakura. J. Phys. Soc. Jap. 16, 1213 (1961).
- [7] W.C. Chiou, E.A. Carter. Surf. Sci. 530, 87 (2003).
- [8] Н.И. Медведева, Л.Е. Карькина. ФММ 96, 16 (2003).
- [9] I.R. Shein, N.I. Medvedeva, A.L. Ivanovskii. Physica B: Cond. Matter 371, 126 (2006).
- [10] Н.И. Медведева, Л.Е. Карькина, А.Л. Ивановский. ФТТ 48, 17 (2006).

- [11] Н.И. Медведева, Л.Е. Карькина, А.Л. Ивановский. ФММ 101, 440 (2006).
- [12] H. Bernas, I.A. Campbell, R. Fruchart. J. Phys. Chem. Sol. 28, 17 (1967).
- [13] H. Bernas, I.A. Campbell. Phys. Lett. 24 A, 74 (1967).
- [14] M. Umemoto, Y. Todaka, T. Takahashi, P. Tokumiya, K. Tsuchiya. Mater. Sci. Eng. A 375–377, 894 (2004).
- [15] Г.В. Самсонов, Н.М. Винницкий. Тугоплавкие соединения. Металлургия, М. (1976).