Влияние внешнего электрического поля на спектры поглощения *R*-линий в кристаллах LiNbO₃ : Cr³⁺

© А.П. Скворцов, В.А. Трепаков, Л. Ястрабик*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *Институт физики Академии наук Чешской Республики, 18040 Прага 8, Чешская Республика

(Поступила в Редакцию 30 мая 1997 г.)

С помощью чувствительной дифференциальной методики при температуре 77 К исследовано влияние внешнего электрического поля на *R*-линии поглощения кристаллов LiNbO₃: Cr^{3+} . В поле вдоль тригональной оси кристалла обнаружен линейный эффект Штарка. В поле, направленном перпендикулярно тригональной оси кристалла, какого-либо влияния поля не наблюдалось. Такие свойства эффекта Штарка однозначно устанавливают ориентацию постоянных электрических дипольных моментов Cr^{3+} -центров вдоль тригональной C_3 -оси кристалла и свидетельствуют о C_3 -симметрии хромовых центров в LiNbO₃.

Интерес к кристаллам LiNbO₃, как чистым, так и активированным ионами редкоземельных и переходных металлов, связан с разнообразными практическими применениями этих кристаллов (в нелинейной оптике и электрооптике, в лазерной физике, для голографической записи информации и т.д.).

Ионы Cr³⁺ (ионный радиус 0.63 Å) в принципе могут замещать в решетке ниобата лития (пространственная группа Cr_{3v}^6) как ионы Li⁺ (ионный радиус 0.68 Å), так и ионы Nb^{5+} (ионный радиус 0.69 Å), а также занимать имеющиеся в кристаллической решетке структурные вакансии. Все перечисленные позиции находятся в октаэдрическом кислородном окружении и характеризуются тригональной точечной группой C₃ [1]. Однако локальная неаксиальная компенсация избыточного заряда или образование неаксиальных комплексов ионов Cr³⁺ могут понизить симметрию примесного центра до триклинной С₁. Несмотря на значительное число публикаций, до сих пор нет окончательных данных о позиции, замещаемой ионами Cr³⁺ в LiNbO₃ и механизме компенсации избыточного заряда. Опубликованные результаты исследований свидетельствуют о том, что ионы Cr³⁺ замещают в решетке ниобата лития как ионы Li⁺, так и ионы Nb⁵⁺, а также занимают структурные вакансии, образуя тригональные центры. Кроме того, ионы хрома могут замещать соседние литиевые и ниобиевые позиции, создавая парные центры, также характеризующиеся тригональной точечной группой С3 (см. [2] и ссылки в ней). В то же время результаты исследования ЭПР указывают на существование в кристаллах LiNbO₃ : Cr³⁺ двух низкосимметричных (C_1) хромовых центров [3,4], а при достаточной концентрации активатора также и неаксиальных обменно-связанных хромовых димеров и тримеров [5].

Сведения о позициях примесных ионов в кристаллической решетке и механизме компенсации избыточного заряда имеют важное значение как для понимания физических процессов, происходящих в активированных кристаллах, так и для их практического использования. Исследования во внешнем электрическом поле часто позволяют получить такую информацию. В настоящей работе исследованы спектры поглощения кристаллов LiNbO₃:Cr³⁺ в области *R*-линий и влияние на них внешнего электрического поля.

Впервые спектр поглощения кристаллов LiNbO₃ : Cr³⁺ был изучен в [6–8]. При низких температурах наряду с широкими *U*- и *Y*-полосами в спектре наблюдаются сравнительно узкие *B*- и *R*-линии. *R*-линии частично поляризованы и отвечают электрическим дипольным переходам из основного ${}^{4}A_{2}$ -состояния иона Cr³⁺ на уровни возбужденного ${}^{2}E^{T}$ -состояния, расщепленного тригональным кристаллическим полем и спин-орбитальным взаимодействием на состояния $E_{3/2}^{T}$ и $E_{1/2}^{T}$ [8].

Монокристаллы с примесью Cr³⁺, исследованные в настоящей работе, были выращены методом Чохральского в воздушной атмосфере. Активатор вводился в расплав в виде окисла. Концентрация хрома в шихте составляла около 0.1 wt.%. Ось роста тригональная (0001). После выращивания проводилась монодоменизация кристаллов. Исследования проводились на спектрометре СДЛ-1 (обратная дисперсия 20 Å/mm) при 77 К в поляризованном свете с вектором Е || С₃ и $\mathbf{E} \perp C_3$, где C_3 — тригональная ось кристалла. Изучалась спектральная область 7200-7400 Å, где наблюдаются линии поглощения, соответствующие ${}^{4}A_{2} \rightarrow {}^{2}E$ -переходу; электрическое поле прикладывалось к противоположным граням ориентированных монокристаллических пластинок размером $7 \times 7 \times 1 \text{ mm}^3$.

1. Исследования во внешнем электрическом поле

При исследовании во внешнем электрическом поле оптических спектров примесных ионов, находящихся в безынверсионном кристаллическом поле (C_3 или C_1), в принципе следует ожидать проявления линейного эффекта Штарка. Для обнаружения и изучения влияния электрического поля на d-d-спектры поглощения кристаллов LiNbO₃: Cr³⁺ была использована чувствительная дифференциальная методика [9,10], позволяющая

Рис. 1. Спектр пропускания LiNbO₃: Cr³⁺ (*a*) и соответствующий дифференциальный сигнал $\Delta k = \Delta J(\nu)/J(\nu)$ в поле 51 kV/cm. **E** || *C*₃ (*b*), $\mathcal{E} \perp C_3$ (*c*).

путем измерения малых изменений контура линии в поле исследовать скрытые в ширине линии расщепления.

Как известно, у примесных ионов с нечетным числом электронов (к которым относятся и ионы Cr³⁺; электронная конфигурация $3d^3$), находящихся в кристаллическом поле симметрии С₃ или С₁, имеются только орбитально невырожденные состояния. Для тригональных C_3 -центров влияние на эти состояния оказывает (в линейном приближении) только поле, направленное вдоль тригональной оси кристалла $\mathcal{E} \parallel C_3 [11]$ и вызывающие сдвиг уровней $\Delta \nu = d\mathcal{E}_z$, где d — постоянный электрический дипольный момент примесного иона в соответствующем состоянии. В случае триклинных С1-центров внешнее поле, направленное произвольным образом, вызывает сдвиг уровней $\Delta \nu = \mathcal{E} \mathbf{d}$. Следовательно, экспериментально наблюдаемые свойства эффекта Штарка позволяют сделать вывод о позиционной симметрии примесного иона в кристаллической решетке.

В наших экспериментах переменное электрическое поле $\mathcal{E} = \mathcal{E}_0 \cos 2\pi f t$ прикладывалось к ориентированным образцам, и в области исследуемых линий на частоте поля ($f \approx 260 \text{ Hz}$) измерялся дифференциальный сигнал пропускания [10]

$$\Delta J(\nu, \mathcal{E}) = J_0(\nu) e^{-k(\nu)} k'(\nu) \sum_i I_i \sigma_i \mathcal{E}_0, \qquad (1)$$

где $J_0(\nu)$ — интенсивность падающего на образец света, $k(\nu)$ — коэффициент поглощения спектральной линии, I_i и σ_i — соответственно относительные интенсивности и сдвиги отдельных компонент расщепления.

Рис. 2. Спектр пропускания LiNbO₃: Cr³ (*a*) и соответствующий дифференциальный сигнал $\Delta k = \Delta J(\nu)/J(\nu)$ в поле 52.5 kV/cm. E $\perp C_3$. $\mathcal{E} \parallel C_3$ (*b*), $\mathcal{E} \perp C_3$ (*c*).

2. Экспериментальные результаты и их обсуждение

В спектрах поглощения исследованных кристаллов LiNbO₃: Cr³⁺ в области ${}^{4}A_{2} \rightarrow {}^{2}E$ -перехода в поляризованном свете обнаружены шесть линий: 7233, 7242, 7262, 7277, 7307 Å (рис. 1, *a*; 2, *a*) и очень слабая линия 7348 Å. Происхождение этих линий не совсем ясно. Однако не исключено, что они отвечают переходам в трех (или более) различных хромовых центрах.

В экспериментах во внешнем электрическом поле, направленном вдоль тригональной оси кристалла, в области *R*-линий наблюдался дифференциальный сигнал, имеющий в соответствии с (1) форму первой производной спектра поглощения по частоте, причем максимумы поглощения в линиях совпадали с точкой перегиба дифференциальных кривых (рис. 1, b; 2, b). Такая спектральная форма сигнала характерна для линейного эффекта Штарка в нецентросимметричных кристаллах и свидетельствует о сдвиге центра тяжести линий в поле [10]. Сдвиг всех исследованных линий направлен в одну сторону в отличие от случая В-линий, направление сдвига которых во внешнем поле противоположно [12]. Величина амплитуды дифференциального сигнала связана с величиной сдвига линий в поле. Зависимость амплитуды дифференциального сигнала от напряженности внешнего электрического поля представлена на рис. 3. Она, как и ожидалось в соответствии с (1), оказалась линейной. В поле, направленном перпендикулярно тригональной оси, какого-либо влияния поля не обнаружено (рис. 1, c; 2, c).

Рис. 3. Зависимость величины дифференциального сигнала в области длинноволнового склона линии 7262 Å LiNbO₃: Cr^{3+} от величины напряженности внешнего электрического поля. $\boldsymbol{\mathcal{E}} \parallel C_3$. $\mathbf{E} \perp C_3$.

Такие свойства эффекта Штарка однозначно указывают на ориентацию постоянных электрических дипольных моментов Cr^{3+} -центров вдоль тригональной оси кристалла и свидетельствуют об их C_3 -симметрии. Здесь, однако, следует заметить, что для одиночных Cr^{3+} -центров с триклинной C_1 -симметрией (замещение Li⁺ в ближайшем неаксиальном соседстве с дефектом в металлической подрешетке или в стуктурной вакансии [3,4]) амплитуда дифференциального сигнала в поле $\mathcal{E} \perp C_3$, как показывают несложные расчеты, должна превышать амплитуду сигнала в поле $\mathcal{E} \parallel C_3$ в 2–4 раза, что, несомненно, было бы зафиксировано экспериментально. То же относится и к случаю неаксиальных димеров и тримеров хрома [5].

С помощью соотношения (4) из [10] проведена количественная обработка дифференциальных кривых. Для наиболее изолированных линий определены интегральные характеристики эффекта Штарка $\sum_{i} I_i \sigma_i$, из которых получены величины сдвигов линий в поле. Так, например, для линии 7262 Å сдвиг в поле 10⁵ V/cm составил 1.4 cm⁻¹ (при ширине линии около 40 cm⁻¹), что в 3.5 раза больше, чем спектрах *R*-линий рубина (0.4 cm⁻¹) [13], где ионы Cr³⁺ также находятся в кристаллическом поле, характеризуемом точечной группой C_3 .

Следует заметить, что в кристаллах класса $C_{3\nu}$, к которым относится ниобат лития, во внешнем электрическом поле возможен обратный пьезоэлектрический эффект. Деформация кристалла, вызванная действием внешнего электрического поля и описываемая выражением $u_i = \sum_{j=1}^{3} d_{ji} \mathcal{E}_j$, где d_{ji} — пьезоэлектрические модули [14], в принципе может приводить к смещению уровней центров и соответственно к сдвигу

частот переходов. В использованном нами электрическом поле напряженностью 5 · 10⁴ V/cm, направленном вдоль тригональной оси, возникает деформация кристалла, описываемая тензором деформации с компонентами $u_1 = u_2 = -5 \cdot 10^{-6}$ и $u_3 = 3 \cdot 10^{-5}$. Для ответа на вопрос о возможной связи наблюдавшихся сдвигов линий с обратным пьезоэффектом воспользуемся результатами исследования влияния одноосного сжатия на спектры Cr^{3+} в LiNbO₃ в области переходов ${}^{4}A_{2} \leftrightarrow {}^{2}E$ [7]. Автору [7] не удалось обнаружить каких-либо сдвигов линий при приложении вдоль оси C_3 напряжения $25 \,\mathrm{kG/mm^2}$, а в направлении, перпендикулярном оси С₃ — напряжения 70 kG/mm². Статическое одноосное сжатие вдоль оси C₃ (25 kG/mm²) создает в кристалле деформации $u_1^{\parallel} = u_2^{\parallel} = -0.34 \cdot 10^{-3}$ и $u_3^{\parallel} = 1.23 \cdot 10^{-3}$. При сжатии в перпендикулярном направлении (70 kG/mm²) возникали соответствующие деформации $u_1^{\perp} = u_2^{\perp} = 1.62 \cdot 10^{-3}$ и $u_3^{\perp} = -0.96 \cdot 10^{-3}$. Из сравнения величин деформаций кристалла во внешнем электрическом поле и при одноосном сжатии видно, что деформации, возникающие при сжатии, примерно на два порядка больше. Если предположить, что наблюдаемые сдвиги линий в электрическом поле ($\approx 1 \, \mathrm{cm}^{-1}$) обусловлены обратным пьезоэффектом, то величина сдвига линий при одноосной деформации составила бы $100 \,\mathrm{cm}^{-1}$. Однако в опытах по одноосному сжатию [7] никаких сдвигов замечено не было. Следовательно, наблюдавшиеся в настоящей работе сдвиги линий вызваны главным образом непосредственным действием внешнего электрического поля на уровни ионов Cr³⁺. Такой же вывод был сделан и при исследовании во внешнем электрическом поле кристаллов ниобата лития, активированных редкоземельными ионами [15].

Таким образом, представленные результаты свидетельствуют о наличии в исследованных нами кристаллах по крайней мере трех центров Cr^{3+} , находящихся в тригональном кристаллическом поле симметрии C_3 . Триклинных C_1 -центров не обнаружено. Тригональной C_3 -симметрией обладают ионы Cr^{3+} , находящиеся в позиции Li^+ , Nb^{5+} , а также в структурной вакансии. При этом компенсация избыточного заряда может быть как локальной (не нарушающей аксиальной C_3 -симметрией обладают также аксиальные димеры и тримеры.

В недавних работах [16,17] сделан вывод о существовании в кристаллах LiNbO₃: Cr³⁺ трех Cr³⁺-центров и предложены их модели: основной центр — γ -центр, представляющий собой ион Cr³⁺ в литиевой позиции с нелокальной компенсацией, а также α - и β -центры, состоящие из замещающего литий Cr³⁺ и компенсатора в ближайшей катионной оболочке (вакансия ниобия и Nb⁵⁺, замещающий Li⁺), который, согласно результатам наших исследований, не должен нарушать тригональную C_3 -симметрию.

Настоящая работа частично поддержана Российским фондом фундаментальных исследований (проект № 96-02-17972) и ГНТП 020/2 "Фундаментальная спектроскопия".

Список литературы

- S.C. Abrahams, J.M. Reddy, J.L. Bernstein. J. Phys. Chem. Sol. 27, 6–7, 997 (1966).
- [2] T.H. Yeom, Y.M. Chang, C. Rudowicz, S.H. Choh. Solid State Commun. 87, 3, 245 (1993).
- [3] Г.И. Маловичко, В.Г. Грачев, С.Н. Лукин. ФТТ 28, 4, 991 (1986).
- [4] В.Г. Грачев, Г.И. Маловичко, В.В. Троицкий. ФТТ 29, 2, 607 (1987).
- [5] V. Grachev, G. Malovichko, O. Schirmer. Ferroelectrics 185, 5 (1996).
- [6] G. Burns, D.F. O'Kane, R.S. Title. Phys. Lett. 23, 1, 56 (1996).
- [7] A.M. Glass. J. Chem. Phys. 50, 4, 1501 (1969).
- [8] Р.К. Свиридова, Л.Н. Рашкович, И.Н. Воронина. В сб.: Спектроскопия кристаллов. Наука, М. (1970). С. 270.
- [9] А.А. Каплянский, В.Н. Медведев, А.П. Скворцов. Опт. и спектр. 29, 5, 905 (1970).
- [10] К. Полгар, А.П. Скворцов, А.М. Тверитинов. ФТТ 36, 11, 3408 (1994).
- [11] А.А. Каплянский, В.Н. Медведев. Опт. и спектр. 23, 5, 743 (1967).
- [12] A.P. Skvortsov, A.M. Tveritinov, L. Jastrabik, V.A. Trepakov. Ferroelectrics 185, 37 (1996).
- [13] M.G. Cohen, N. Bloembergen. Phys. Rev. 135, 4A, 950 (1964).
- [14] Ю.С. Кузьминов. Ниобат и танталат лития. Наука, М. (1975). 223 с.
- [15] A.P. Skvortsov, K. Polgar. Acta Phys. Hung. 70, 1–2, 113 (1991).
- [16] P.I. Macfarlane, K. Holliday, J.F.H. Nicholls, B. Henderson. J. Phys. Condens. Matter. 7, 9643 (1995).
- [17] P.I. Macfarlane, K. Holliday, B. Henderson. Chem. Phys. Lett. 252, 311 (1996).