01;05;07;09

Об измерении переходного излучения на расстояниях от точки перехода, сравнимых с длиной формирования

© А.В. Серов, Б.М. Болотовский

Физический институт им. П.Н. Лебедева РАН, 117924 Москва, Россия

(Поступило в Редакцию 14 октября 1996 г.)

Исследуется пространственное распределение электромагнитного поля, возбуждаемого релятивистской частицей, пересекающей поверхность металла. Показано, что поле равномерно движущегося заряда также необходимо учитывать при измерениях на расстоянии, сравнимом с путем формирования излучения. Получены выражения, описывающие влияние собственного поля заряда на поле переходного излучения.

Введение

Простейший тип переходного излучения, возникающий при пересечении равномерно и прямолинейно движущимся зарядом границы раздела двух сред исследован достаточно подробно как теоретически, так и экспериментально [1,2]. Частным случаем такого излучения является излучение, генерируемое релятивистской заряженной частицей, вылетающей из проводника или падающей на проводник. Спектр переходного излучения в этом случае плоский в широком диапазоне от радиочастот до частот, существенно превосходящих оптические частоты. Угловое распределение излучения не зависит от расстояния между точкой выхода частицы из металла (или падения на металл) и приемником излучения. На любом расстоянии от границы раздела энергия, излучаемая вылетевшей частицей, равна нулю по направлению скорости частицы и максимальна под углом $\theta = \gamma^{-1}$ к направлению скорости, где γ — относительная энергия частицы. При падении релятивистской частицы на металл нет излучения под углом $\theta = \pi$, и излучение максимально под углом $\theta = \pi - \gamma^{-1}$.

Электромагнитное поле, генерируемое зарядом, вылетевшим из металла или падающим на металл, является суммой поля равномерно движущегося заряда и поля излучения. Собственное поле заряда распространяется со скоростью заряда, а поле излучения — со скоростью света в данной среде. Обычно энергию переходного излучения подсчитывают как энергию радиационного поля. Но релятивистским зарядом, движущимся прямолинейно с постоянной скоростью $v \approx c$, в точке наблюдения создаются почти равные и взаимно перпендикулярные электрическое и магнитное поля. Эти поля по своей структуре не отличимы от полей излучения (радиационных полей). Поэтому энергию излучения определяют при условии разделения радиационного поля и собственного поля заряда. Под разделением полей понимается временное разделение [1], когда импульс излучения приходит в точку наблюдения много раньше или много позже времени пролета заряда около приемника излучения, при этом поле, увлекаемое частицей, и поле излучения будут также и пространственно отделены друг от друга.

Если измеряется поле, генерируемое частицей, падающей на металл (рис. 1, a), а приемник излучения P расположен ближе к траектории движения частицы, чем к точке ее падения на металл, то регистрируется вначале собственное поле частицы, а затем поле излучения. Задержка между временем прихода в точку наблюдения максимального значения собственного поля движущегося заряда и импульса электромагнитного излучения приблизительно равна

$$\Delta t \simeq \frac{2L}{c},\tag{1}$$

где *L* — расстояние от точки наблюдения до металла.

Если измеряется поле, генерируемое частицей, вылетевшей из металла (рис. 1, b), то на приемник вначале попадает радиационное поле, а затем собственное поле частицы. Задержка при этом равна

$$\Delta t \simeq \frac{L}{2\gamma^2 \nu}.$$
 (2)

Разделение по времени в этом случае происходит при прохождении частицей от точки вылета из металла расстояния, равного пути формирования [3]. Путь формирования l для излучения на длине волны λ равен

$$l \simeq \frac{\lambda \gamma^2}{1 + \gamma^2 \theta^2}.$$
 (3)

На практике условия разделения (особенно условие (2)) не всегда могут быть выполнены. В случае вылета релятивистской частицы из металла время задержки является малой величиной, много меньшей времени движения частицы от границы до точки наблюдения. (При L = 1 м $\Delta t = 3 \cdot 10^{-9}/2\gamma^2$). Поэтому если у регистрирующего прибора разрешение по времени недостаточно малó, то его показание будет определяться не только электромагнитным полем излучения, но и полем заряда. Тем более это относится к случаю, когда для регистрации используется спектральный прибор. В этом случае показания всегда определяются как спектром поля излучения, так и спектром собственного поля частицы.

Рис. 1. Генерация переходного излучения зарядом, падающим на металл (a) и вылетающим из металла (b).

В настоящей работе рассматривается влияние собственного поля заряда на спектрально-угловые характеристики поля, генерируемого релятивистской заряженной частицей, вылетевшей из металла.

Основные соотношения

Рассмотрим поле, возникающее при вылете частицы из металла перпендикулярно его поверхности. Металл считаем идеально проводящим. Частица вылетает из точки x = 0, y = 0 в положительном направлении оси х со скоростью v. Генерируемое поле может быть представлено как суперпозиция полей двух мгновенно стартующих заряженных частиц (рис. 2). Одна из частиц является реальным зарядом q, а вторая представляет собой изображение этого заряда. Изображение имеет заряд, противоположный по знаку и равный по величине заряду вылетевшей частицы. Скорость изображения равна по величине и противоположна по знаку скорости вылетевшей частицы, так что положение изображения определяется соотношением x = -vt. Очевидно, что если провести плоскость через точку x = 0 перпендикулярно оси х, то силовые линии суммарного электрического поля, созданного зарядом и изображением, перпендикулярны этой плоскости. Таким образом, на плоскости x = 0 выполняются те же граничные условия, что и на металле. Поэтому в данном случае задача о переходном излучении сводится к задаче об излучении при мгновенном старте двух зарядов равной величины и противоположного знака, разлетающихся из одной точки в противоположных направлениях [4].

В этом случае поле имеет следующую пространственно-временну́ю структуру. Рассмотрим полусферу, лежащую в полупространстве x > 0 с центром, расположенным в точке вылета заряда, и радиусом r = ct. Вне этой полусферы поле равно нулю. Внутри полусферы поле равно суперпозиции полей равномерно движущегося заряда и его изображения. Силовые линии, лежащие на поверхности сферы, определяют поле излучения.

Положим, что приемник излучения P находится в точке x_p , y_p . Поле излучения, генерируемое при мгно-

венном старте заряда и изображения заряда, описывается выражениями [3]

$$E_x^r = \frac{q}{r_p} \delta(r_p - ct) \left\{ \frac{\beta \sin^2 \theta}{1 - \beta \cos \theta} + \frac{\beta \sin^2 \theta}{1 + \beta \cos \theta} \right\}$$
$$= \frac{q}{r_p} \delta(r_p - ct) \frac{2\beta \sin^2 \theta}{1 - \beta^2 \cos^2 \theta}, \tag{4}$$

$$E_{y}^{r} = \frac{q}{r_{p}}\delta(r_{p} - ct)\left\{\frac{\beta\sin\theta\cos\theta}{1 - \beta\cos\theta} + \frac{\beta\sin\theta\cos\theta}{1 + \beta\cos\theta}\right\}$$
$$= \frac{q}{r_{p}}\delta(r_{p} - ct)\frac{2\beta\sin\theta\cos\theta}{1 - \beta^{2}\cos^{2}\theta},$$
(5)

где $r_p = \sqrt{x_p^2 + y_p^2}, \ \beta = v/c$ — относительная скорость частицы.

Дельта-функция от аргумента $(r_p - ct)$ учитывает то обстоятельство, что поле излучения отличается от нуля только на сфере r = ct, расширяющейся со скоростью света.

Рис. 2. Представление поля, формируемого зарядом, вылетающим из металла в виде суперпозиции полей двух мгновенно стартующих заряженных частиц.

Поле, создаваемое равномерно движущимся зарядом и его изображением, описывается выражениями

$$E_x^q = q(1-\beta^2) \left[\frac{x_p - vt}{[(1-\beta^2)y_p^2 + (x_p - vt)^2]^{3/2}} + \frac{x_p + vt}{[(1-\beta^2)y_p^2 + (x_p + vt)^2]^{3/2}} \right],$$
(6)

$$E_{y}^{q} = q(1-\beta^{2}) \left[\frac{y_{p}}{[(1-\beta^{2})y_{p}^{2} + (x_{p} - vt)^{2}]^{3/2}} + \frac{y_{p}}{[(1-\beta^{2})y_{p}^{2} + (x_{p} + vt)^{2}]^{3/2}} \right].$$
(7)

Сфера r = ct по мере своего расширения проходит через точку наблюдения. В момент времени $t = \sqrt{x_p^2 + y_p^2}/c$ в точке наблюдения поле изменяется от нулевого до значения поля излучения, описываемого соотношениями (4), (5). Спектральные разложения составляющих радиационного поля имеют вид

$$E_x^r(\omega) = \frac{q}{\pi c r_p} \frac{\beta \sin^2 \theta}{1 - \beta^2 \cos^2 \theta} \exp\left(i\frac{\omega}{c}r_p\right),\qquad(8)$$

$$E_{y}^{r}(\omega) = \frac{q}{\pi c r_{p}} \frac{\beta \sin \theta \cos \theta}{1 - \beta^{2} \cos^{2} \theta} \exp\left(i\frac{\omega}{c}r_{p}\right).$$
(9)

В последующие моменты времени $(t > \sqrt{x_p^2 + y_p^2}/c)$ поле в точке наблюдения равно сумме полей двух равномерно движущихся по оси *x* зарядов, реального *q*, движущегося со скоростью *v* из точки с координатами $x = \beta \sqrt{x_p^2 + y_p^2}$, y = 0, и его изображения -q, движущегося со скоростью -v из точки $x = -\beta \sqrt{x_p^2 + y_p^2}$, y = 0. Зависимость поля от времени описывается выражениями (6), (7). В дальнейшем мы будем рассматривать случай, когда заряженная частица вылетает из металла и точка наблюдения расположена в вакууме на малом расстоянии от траектории. Тогда можно пренебречь полем изображения и учитывать только первые члены в выражениях (6) и (7).

Видно, что E_x -составляющая поля меняет свой знак в тот момент времени, когда заряд находится в точке $x = x_p$, y = 0. Интеграл по времени от этой составляющей поля равен нулю. Импульс поля E_x при $t \cong x_p/v$ близок по форме к синусоиде с частотой $\omega \sim \gamma v/y_p$, поэтому его спектр состоит из узкой области частот вблизи от частоты $\omega = \gamma v/y_p$. E_y -составляющая электромагнитного поля представляет собой импульс колоколообразной формы с амплитудой $E_y \sim q\gamma/y_p^2$ и характерной шириной $\tau \sim y_p/\gamma v$. Спектр импульса содержит все частоты вплоть до $\omega \sim 1/\tau$. Фурьепреобразования составляющих импульса электромагнитного поля имеют вид [5]

$$E_x^q(\omega) = -i\frac{q\omega}{\pi v^2 \gamma^2} K_0\left(\frac{\omega y_p}{\gamma v}\right),\tag{10}$$

$$E_{y}^{q}(\omega) = \frac{q\omega}{\pi v^{2} \gamma} K_{1}\left(\frac{\omega y_{p}}{\gamma v}\right), \qquad (11)$$

где *K*₀, *K*₁ — модифицированные функции Бесселя от мнимого аргумента (функции Макдональда).

Приведенные выше соотношения описывают электромагнитные поля и их спектр в том случае, когда поле излучения и собственное поле равномерно движущегося заряда полностью разделены во времени. Предположение о полном разделении полей при переходном излучении представляет собой определенную идеализацию. На практике импульсы, формируемые радиационным полем и собственным полем частицы, в большей или меньшей степени перекрываются. поэтому пространственновременная и спектрально-угловая структура поля существенно зависят от расстояния между приемником и металлической поверхностью. Практический случай тем ближе к идеальному, чем дальше приемник излучения расположен от точки перехода заряда ($L \gg 1$) и чем меньше угол, под которым происходит наблюдение $(\theta \ll 1/\gamma).$

Поле переходного излучения

На рис. 3 показаны изменения E_y -составляющих электрического поля во времени в различных точках пространства. Зависимости построены по соотношениям (5) и (7) для электрона, вылетевшего из металла с энергией $\gamma = 150$. Расстояние от поверхности металла до плоскости измерений $x_p = 3$ м, а поперечное расстояние от приемника до траектории $y_p = 5$, 10, 15 мм (кривые 1-3 соответственно). Начальный скачок электрического поля, описываемый дельта-функцией в выражении (5), соответствует моменту прихода в точку наблюдения радиационного поля электрона. В последующие моменты времени зависимость определяется собственным полем равномерно движущегося заряда. На рис. 3 моменту

Рис. 3. Зависимость от времени E_y -составляющей электрического поля. $\gamma = 150$, $x_p = 3$ м; y_p , мм; I = 5, 2 = 10, 3 = 15.

Журнал технической физики, 1997, том 67, № 9

Рис. 4. Угловое распределение спектральных составляющих $E_y(\omega)$. $\gamma = 150$, $x_p = 3$ м; $1 - E_y^q(\omega)$, $2 - E_y^r(\omega)$, $3 - E_y^{r+q}(\omega)$.

t = 0 соответствует время прихода радиационного поля в точку, лежащую на пересечении траектории частицы и плоскости измерений x = L и имеющую координаты $x_p = 3$ м, $y_p = 0$. Из рисунка видно, что увеличение поперечной координаты приемника приводит не только к уменьшению амплитуды импульса, формируемого собственным полем равномерно движущегося электрона, но и к изменению формы импульса, уменьшению длительности и увеличению асимметрии формы импульса. Можно показать, что в приемнике, расположенном под углом $\theta = \gamma^{-1}$, собственное поле будет формировать только половину колоколообразного импульса, левая половина которого будет обрезана.

Спектр суммарного поля может быть получен разложением зависимости, представленной на рис. 3, в интеграл Фурье. Сразу можно отметить, что спектральный состав сигнала (особенно на частотах, период которых соизмерим с длительностью импульса собственного поля частицы) будет сильно зависеть от поперечной координаты приемника.

На рис. 4 представлены зависимости углового распределения E_v-составляющей напряженности поля для двух длин волн: $\lambda = 1$ (*a*) и 2 мм (*b*). Кривая 1 описывает распределение собственного поля равномерно движущегося заряда, кривая 2 — радиационного поля, кривая 3 — суммарного поля. Видно, что даже на достаточно большом расстоянии от поверхности металла (плоскость измерений находится на расстоянии 3 м) распределение суммарного поля сильно отличается от распределения радиационного поля. Во-первых, зависимости имеют несколько максимумов, амплитуда и положение которых зависит от длины волны, в то время как радиационное поле для всех длин волн имеет один максимум под углом $\theta = \gamma^{-1}$. Во-вторых, в пространстве, близком к траектории частицы при углах $\theta < \gamma^{-1}$, величина поля определяется в основном собственным полем заряда.

Выберем критерий, определяющий границу области, в которой уже сказывается влияние собственного поля

заряда. Будем сравнивать радиационное и собственное поле в точках пространства, расположенных на направлении максимальной интенсивности радиационного поля, т.е. под углом $\theta = \gamma^{-1}$ к скорости частицы в точке ее выхода из металла. Если на этом направлении величины $E^q(\omega)$ и $E^r(\omega)$ одного порядка, то можно сказать, что при углах $\theta < \gamma^{-1}$ собственное поле частицы оказывает существенное влияние на спектр электромагнитного поля.

Будем сравнивать только $E_y(\omega)$ -составляющие фурьегармоник. Для релятивистских частиц ($\gamma \gg 1$) из выражения (9) получаем значение амплитуды фурьегармоники радиационного поля в направлении $\theta = \gamma^{-1}$

$$E_{y}^{r}(\omega) = \frac{q}{2\pi cr_{p}} \frac{\beta}{\gamma \left(1 - \beta + \frac{1}{2\gamma^{2}}\right)} \approx \frac{q\beta\gamma}{2\pi cL}.$$
 (12)

При выводе предполагалось, что $\sin \theta \approx \theta$, $\cos \theta \approx 1 - (\theta^2/2)$ и $r_p \approx L$. Для получения выражения, описывающего фурье-компоненту собственного поля заряда, необходимо вычислить интеграл

$$E_{y}^{q}(\omega) = \frac{qy_{p}}{2\pi\gamma^{2}\nu^{3}} \int_{0}^{\infty} \frac{\exp(i\omega t_{1})}{\left(\frac{y_{p}^{2}}{\gamma^{2}\nu^{2}} + t_{1}^{2}\right)^{3/2}} dt_{1}.$$
 (13)

В интеграле использован только первый член в правой части выражения (7) и выполнена подстановка $t_1 = t - (x_p/v)$. Второй член в (7) много меньше первого, и им будем пренебрегать. Нижним пределом интегрирования является момент времени, при котором радиационное поле достигает приемника излучения. Поскольку приемник расположен под углом $\theta = \gamma^{-1}$, то в этот момент времени заряд находится в точке x_p , т. е. на наименьшем расстоянии от приемника.

В самом деле, поле равномерно движущегося заряда будет регистрироваться приемником сразу после прохождения радиационного фронта, в момент времени $t = r_p/c$. В это время частица будет находиться в

Рис. 5. Зависимость отношения гармоник собственного поля $E_y^q(\omega)$ и радиационного поля $E_y^r(\omega)$ от приведенного расстояния до приемника.

точке $x = vt = vr_p/c$. В нашем случае продольная координата приемника x_p и расстояние, на котором он находится от точки вылета r_p , связаны соотношением $r_p = x_p/\cos(1\gamma)$. Учитывая, что $\gamma = (1 - \beta^2)^{1/2}$, и полагая $\cos(1/\gamma) \approx 1 - (1/2\gamma^2)$, получаем координату частицы в момент времени $t = r_p/c$. Она будет равна $x = x_p$. После интегрирования имеем

$$E_{y}^{q}(\omega) = \frac{q\omega}{2\pi\gamma\nu^{2}} \left\{ K_{1}\left(\frac{\omega y_{p}}{\gamma\nu}\right) + i\frac{\pi}{2} \left[-I_{1}\left(\frac{\omega y_{p}}{\gamma\nu}\right) + L_{1}\left(\frac{\omega y_{p}}{\gamma\nu}\right) + \frac{2}{\pi} \right] \right\}, \quad (14)$$

где *K*₁ — функция Макдональда; *I*₁, *L*₁ — модифицированные функции Бесселя и Струве.

Аргументом специальных функций является величина $\omega y_p / \gamma v$. Поскольку в данном случае $y_p = L/\gamma$, а путь формирования излучения на длине волны λ равен $l = \lambda \gamma^2/2$, то аргумент функций можно записать в виде $\omega y_p / \gamma v = \pi L/l$, т.е. представить в виде отношения расстояния от металла до приемника к пути формирования излучения.

Отношение гармоник собственного поля $E_y^q(\omega)$ и радиационного поля $E_y^r(\omega)$ описывается соотношением

$$S = \left| \frac{E_{y}^{q}(\omega)}{E_{y}^{r}(\omega)} \right| = \left| \pi \frac{L}{l} \left\{ K_{1} \left(\pi \frac{L}{l} \right) + i \frac{\pi}{2} \left[-I_{1} \left(\pi \frac{L}{l} \right) + L_{1} \left(\pi \frac{L}{l} \right) + \frac{2}{\pi} \right] \right\} \right|, \quad (15)$$

из которого следует, что его величина зависит только от отношения расстояния до приемника L к пути формирования излучения l. Зависимость S(L/l) приведена на рис. 5. Видно, что, даже когда расстояние L больше в 3 раза длины формирования l, амплитуда гармоники собственного поля частицы составляет еще 10% от амплитуды радиационного поля.

Заключение

Классические выражения для полей переходного излучения [4] получены в предположении, что поле излучения не интерферирует с увлекаемым собственным полем заряда. Из сказанного следует, что в зависимости от расположения регистрирующего прибора интерференция этих двух полей может существенно влиять на результат, и это обстоятельство следует учитывать в реальных измерениях.

Список литературы

- [1] Гинзбург В.Л., Цытович В.Н. Переходное излучение и переходное рассеяние. М.: Наука, 1984.
- [2] Библиография работ по переходному излучению заряженных частиц (1945–1982). Ереван: Ереванский физический институт, 1983.
- [3] Болотовский Б.М. // Тр. ФИАН. 1982. Т. 140. С. 95–140.
- [4] Гинзбург В.Л., Франк И.М. // ЖЭТФ. 1946. Т. 16. С. 15.
- [5] Джексон Дж. Классическая электродинамика. М.: Мир, 1965.