Электрические и магнитные свойства CeNi₄In с насыщенной валентностью Ce

© М.Д. Котерлин, Б.С. Морохивский, Р.Р. Кутянский, И.Д. Щерба, Я.М. Калычак

Львовский государственный университет, 290005 Львов, Украина

(Поступила в Редакцию 22 мая 1997 г.)

Приведены результаты измерений электросопротивления, термоэдс и магнитной восприимчивости соединения CeNi₄In с насыщенной валентностью Ce в интервале температур 4.2–400 К. Показано, что такое состояние Ce в металлических соединениях характеризуется образованием тонкой структуры плотности состояний возле уровня Ферми, качественно отличной от случая обычного состояния с промежуточной валентностью.

В проблеме валентной нестабильности редкоземельных элементов особое место занимает вопрос природы состояния насыщенной валентности (СНВ) церия в металлических соединениях [1]. Известно, что для СНВ Се, в отличие от обычных состояний с промежуточной валентностью (СПВ), свойственно сравнительно слабое проявление корреляционных эффектов и высокая устойчивость заселенности *f*-оболочки n_f ($n_f \simeq 0.65-0.70$) по отношению к воздействию ряда внешних факторов (температуры, давления, изменения параметров кристалла вследствие атомных замещений) [1–4].

Исходя из приближения предельной локализации f-состояний Се в металлических системах, образование СНВ можно рассматривать как немагнитное состояние Кондо с высокой характеристической температурой $T_{\rm sf} \sim 10^3$ K [5]. Наряду с этим существуют расчетные и экспериментальные данные [6,7], указывающие на существенно зонный характер f-состояний в режиме СНВ. К настоящему времени еще не накоплено достаточно данных для хотя бы качественной характеристики явления СНВ Се на микроскопическом уровне. В связи с этим актуальным является дальнейшее изучение особенностей проявления СНВ Се в различных кристаллических матрицах.

В данной работе приведены результаты исследования электрических и магнитных свойств нового соединения CeNi₄In (кубическая структура типа MgSnCu₄, пространственная группа $F\bar{43}m$ [8]) с церием в состоянии насыщенной валентности. Для качественного выделения вклада CHB Се в формирование электрических свойств CeNi₄In при высоких температурах использовали изоструктурное соединение с Nd.

Соединения получали прямым сплавлением в электродуговой печи в атмосфере очищенного аргона компактных никеля (99.91% Ni), индия (99.99% In) и редкоземельного металла (чистотой не менее 99.85% основного компонента). Гомогенизирующий отжиг проводился при 900 К на протяжении 150 h. Определенные по дифрактограммам (дифрактометр ДРОН-2.0, Fe K_{α} -излучение) периоды решеток сплавов находились в хорошем соответствии с приведенными в [8].

Подготовка образцов и методика измерений аналогичны описанным в [9]. Идентификация валентного состояния Се проводилась на основании измерений рентгеновских *I*_{III}-спектров поглощения при температуре 300 К по методике, описанной в [10]. Значения термоэдс измеряли относительно Cu.

На рис. 1 приведены экспериментальный Се $L_{\rm III}$ -спектр поглощения и его разложение на составляющие (линия гауссовой формы, описывающая атомный 2p-5d-переход и агсtg-подобная линия, описывающая край поглощения зонными состояниями), соответствующие условным ионным конфигурациям Се³⁺ (4f¹) и Се⁴⁺ (4f⁰). Определенная по соотношению интенсивностей основных линий заселенность f-оболочки n_f становилась $\sim 0.70 \pm 0.03$, что соответствует состоянию насыщенной валентности в металлических соединениях.

На рис. 2,3 приведены температурные зависимости удельного электросопротивления ρ и термоэдс *S* для RNi₄In (R = Ce, Nd). Зависимость $\rho(T)$ для CeNi₄In подобна наблюдаемой для соединений с СПВ Ce [11] (Ферми-жидкостное поведение $\rho \sim AT^2$ с $A = 2.4 \cdot 10^{-3} \mu \Omega \cdot \text{сm} \cdot \text{K}^{-2}$ при T < 60 K, отрицательная кривизна $\rho(T)$ на участке ожидаемого поведения $\rho \sim T$

Рис. 1. Экспериментальный рентгеновский L_{III} -спектр поглощения Се в CeNi₄In и его разложение на составляющие.

Рис. 2. Температурные зависимости электросопротивления RNi_4In , R = Ce(1), Nd(2). На вставке приведены зависимости вклада в общее электросопротивление валентно-неустойчивого состояния Се в логарифмической шкале температур.

при $T > 100 \,\mathrm{K}$). В случае NdNi₄In зависимость $\rho(T)$ качественно соответствует закону Блоха-Грюнайзена. Отсутствие четко выраженного участка $\rho = \text{const}$ при $T \rightarrow 0$ обусловлено, по-видимому, проявлением рассеяния носителей заряда на магнитных ионах Nd³⁺. Такое дополнительное рассеяние не является препятствием для качественной оценки вклада в общее ρ валентно неустойчивых состояний Ce ($\Delta \rho$). Как видно, в интервале измеряемых температур $\Delta \rho$ не достигает насыщения (см. вставку на рис. 2), что качественно согласуется с ожидаемым высоким значением $T_{\rm sf}$ (> 400 K), характеризующим СНВ Се. Зависимость S(T) для CeNi₄In в отличие от случая систем с СПВ Се [11] не обнаруживает характерного положительного вклада с максимумом. Сравнение высокотемпературных участков S(T) соединений CeNi₄In и NdNi₄In указывает на отрицательный вклад СНВ Се в термоэдс. Подобное поведение зависимостей S(T) обнаружено нами ранее для CeNi₅ с CHB Ce при последовательном замещении Ni p-элементами (Al,Ga, Si, Ge) [3,4]. Примечательно, что в случае *р*-элементов группы In появление зависимостей S(T), аналогичных приведенной на рис. 3 для CeNi₄In наблюдается при составах CeNi₄Al и CeNi₄Ga. Дополнительный отрицательный вклад в *S*(*T*) при *T* < 100 К можно связывать с проявлением электрон-фононного взаимодействия [12].

Температурное поведение магнитной восприимчивости χ для CeNi₄In имеет сложный характер и качественно соответствует закону Кюри–Вейсса только при T < 20 К (рис. 4). Учитывая возможную магнетоактивность подрешетки Ni, зависимость $\chi(T)$ аппроксимировали формулой

$$\chi(T) = C/(T + \Theta) + \chi_P(T),$$

$$\chi_P(T) = \chi_P(0) [1 - bT^2 \ln(T/T_{\rm sf})].$$
 (1)

Здесь первое слагаемое — кюри–вейссовская составляющая χ , второе слагаемое описывает Ферми-жидкостное поведение составляющей χ , обусловленное валентно нестабильным Се, и взято из [13]. Наименьшую ошибку аппроксимации (< 1%) обеспечивают значения параметров $C = 7.4 \cdot 10^{-5} \text{ cm}^3 \cdot \text{g}^{-1} \cdot \text{K}^{-1}$, $\Theta = 4.4 \text{ K}$, $\chi_P(0) = 3.5 \cdot 10^{-6} \text{ cm}^3 \cdot \text{g}^{-1}$, $b = -9.5 \cdot 10^{-12} \text{ K}^{-2}$ и $T_{\text{sf}} = 1213 \text{ K}$. Это соответствует наличию эффективного магнитного момента на ионах Ni $\mu_{\text{eff}} = 0.5 \mu_{\text{B}}$ в паулиевской составляющей χ_P , спадающей с ростом T (см. вставку на рис. 4). Используя для выделения $\chi_P(T)$ часто употребляемую парамагнонную модель [14] для описания магнитной восприимчивости металлических систем с валентно неустойчивым Се

$$\chi_P(T) = \chi_P(0) \left[1 + a (T/T_{\rm sf})^2 \right], \tag{2}$$

получаем с несколько большей ошибкой аппроксимации (~1.2%) примерно те же значения параметров для подрешетки Ni ($C = 7.9 \cdot 10^{-5} \text{ cm}^3 \cdot \text{g}^{-1} \cdot \text{K}^{-1}$, $\Theta = 4.9 \text{ K}$) и составляющей $\chi_P(T)$ ($\chi_P(0) = 3.4 \cdot 10^{-6} \text{ cm}^3 \cdot \text{g}^{-1}$, a = -1.0 и $T_{\text{sf}} = 1091 \text{ K}$). В обоих случаях для зависимости $\chi_P(T)$ необычным является отсутствие заметного плато $\chi_P \simeq \text{const}$ при $T \ll T_{\text{sf}}$ и максимума, характерного для Ферми-жидкостных систем такого типа. Такое поведение, согласно [13,14], свидетельствует об отсутствии заметной положительной кривизны плотности состояний возле уровня Ферми E_F , характерной для систем с СПВ Се.

Известно, что в интерметаллических соединениях с СПВ Се в прифермиевской области энергетического

Рис. 3. Температурные зависимости термоэдс RNi_4In , R = Ce(1), Nd(2).

Рис. 4. Температурные зависимости магнитной восприимчивости CeNi₄In. На вставке приведена составляющая магнитной восприимчивости, обусловленная валентно-неустойчивым состоянием Ce.

спектра образуется узкий пик плотности состояний $g_f(E)$ с шириной $\Gamma_f \sim T_{
m sf}$, "закрепленный" над уровнем E_F так, что $S(T) \sim dg_f(E)/dE_{|E=E_F} > 0$ [15] и $\chi(T)$ хорошо описывается при температурах $T < T_{\rm sf}$ формулами (1), (2) и имеет максимум при $T \sim T_{\rm sf}$ [11,14]. В нашем случае из совокупности приведенных данных можно заключить, что в прифермиевской области энергетического спектра образуется пик плотности состояний ниже уровня E_F. Возможность образования такой структуры качественно согласуется с результатами расчета энергетического спектра в примесной модели Андерсона с сильным вырождением и дополнительным учетом спин-орбитального расщепления [16]. Вовлечение возмущенного мультиплета Ce^{3+} с J = 7/2 в образование дополнительной тонкой структуры плотности состояний возле E_F вполне реально, если учитывать, что в состоянии насыщенной валентности Се энергия спинорбитального расщепления $\Delta_{SO} \simeq 0.2 \, \mathrm{eV}$ [1] вполне сравнима с T_{sf}. Аналогичным подтверждением возможности проявления СНВ Се в металлических системах посредством образования тонкой структуры плотности состояний ниже уровня Е_F является появление дополнительного отрицательного вклада в общую термоэдс в твердых растворах $CeNi_{5-x}M_x$ (M = Al, Ga, Si, Ge) и при инициировании фазового перехода с изменением валентности в CeNi_{5-x}Cu_x [17].

В заключение следует отметить, что для выяснения природы образования такой структуры целесообразным является выполнение количественных расчетов в рамках модели [16] с учетом реальных микроскопических параметров взаимодействия *f*-состояний с зонными состояниями кристаллической матрицы.

Список литературы

- J.Rohler. In: Handbook on the Physics and Chemistry of Rare Earth / Ed. K.A. Gschneidner, Jr.L. Eyring, S. Kufner. (1989).
 V. 10. P. 453.
- [2] В.А. Шабуров, Ю.П. Смирнов, А.Е. Совестнов, А.В. Тюнис. Письма в ЖЭТФ 41, 5, 213 (1981).
- [3] М.Д. Котерлин, О.И. Бабич, Б.С. Морохивский, Г.Я. Лень, Р.В. Луцив, Ю.Н. Гринь. ФТТ 29, 3, 943 (1987).
- [4] М.Д. Котерлин, О.И. Бабич, Б.С. Морохивский, М.Б. Конык, Р.В. Луцив. ФТТ 30, 5, 1612 (1988).
- [5] J.W. Allen, R.M. Martin. Phys. Rev. Lett. 49, 15, 1106 (1982).
- [6] L. Severin, B. Johansson. Phys. Rev. B50, 24, 17886 (1994).
- [7] S.-H. Yang, H. Rumigashira, T. Yokoga, A. Chainani, T. Takahashi, H. Takeya, K. Kadowaki. Phys. Rev. B53, 18, R11946 (1996).
- [8] В.И. Заремба, В.М. Бараняк, Я.М. Калычак. Вестн. Львов. Ун-та. Сер. хим. 25, 18 (1984).
- [9] М.Д. Котерлин, О.И. Бабич, Б.С. Морохивский, Л.И. Николаев, А.В. Ющенко. Препринт ИМФ № 15. Киев (1987). 28 с.
- [10] М.Д. Котерлин, Б.С. Морохивский, И.Д. Щерба, Н.Г. Герман. УФЖ 38, 2, 262 (1993).
- [11] N.B. Brandt, V.V. Moshchalkov. Adv. Phys. 33, 5, 373 (1984).
- [12] S. Cabus, K. Gloos, U. Gottwick, S. Horn, M. Klemen, J. Kübler, F. Steglich. Solid. State Commun. 51, 11, 909 (1984).
- [13] S. Misawa. Physica B149, 162 (1988).
- [14] M.T. Beal-Monod, J.M. Lawrence. Phys. Rev. B21, 10, 5400 (1980).
- [15] М.Д. Котерлин, Р.В. Луцив. В кн.: Физика и химия редкоземельных полупроводников. Наука, Новосибирск, (1990). С. 18.
- [16] N.E. Bickers, D.L. Cox, J.W. Wilkins. Phys. Rev. B36, 4, 2036 (1987).
- [17] Р.В. Луцив, М.Д. Котерлин, О.И. Бабич, О.И. Бодак. ФТТ 26, 4, 1182 (1984).