Поверхность Ферми и термоэдс смешанных кристаллов $(Bi_{1-x}Sb_x)_2Te_3(Ag,Sn)$

© В.А. Кульбачинский, А.Ю. Каминский, П.М. Тарасов, П. Лостак*

Московский государственный университет им. М.В. Ломоносова, 119992 Москва, Россия * Университет г. Пардубицы, 53210 Пардубицы, Чехия

E-mail: kulb@mig.phys.msu.ru

(Поступила в Редакцию 3 июня 2005 г.)

Исследована анизотропия поверхности Ферми монокристаллов $(Bi_{1-x}Sb_x)_2Te_3$ (0.25 $\leq x \leq 1$) с помощью изучения угловых зависимостей частот эффекта Шубникова-де Гааза, а также влияние легирования оловом и серебром на их термоэдс в интервале температур 77 $\leq T \leq 300$ К. Показано, что легирование серебром смешанных кристаллов $(Bi_{1-x}Sb_x)_2Te_3$ вызывает акцепторный эффект, в то время как в Bi_2Te_3 серебро проявляет донорные свойства. Олово также проявляет акцепторные свойства. Легирование смешанных кристаллов p- $(Bi_{1-x}Sb_x)_2Te_3$ и оловом, и серебром приводит к уменьшению термоэдс, что связано с увеличением концентрации дырок.

PACS: 71.18.+y, 72.15.Jf, 71.55.Jv

Полупроводниковые материалы на основе теллуридов висмута и сурьмы в настоящее время являются самыми эффективными и широко используемыми для термоэлектрических преобразователей энергии, холодильников, термостатов, работающих в интервале температур 200-350 К. Поиск путей увеличения термоэлектрической эффективности этих веществ кроме фундаментального научного имеет и прикладное значение, так как в последние годы для решения ряда практических задач возникла необходимость достижения температур ниже 150 К термоэлектрическими методами. Поэтому исследование материалов, обладающих высокой термоэлектрической эффективностью $Z = \alpha^2 \sigma / k$ [1] (σ и k — соответственно электро- и теплопроводность, α — коэффициент Зеебека), в настоящее время актуально. Оптимальных величин параметров можно достичь введением различных легирующих примесей. Максимальному значению Z соответствует определенная концентрация носителей заряда, которая может изменяться при отклонении от стехиометрии или легировании кристалла [2].

Слоистые кристаллы типа теллурида висмута легко легируются. Для сохранения стехиометрического состава примеси вводят в виде соединений (например, Cd и In вводятся в подрешетку висмута Bi_2Te_3 в виде Cd_2Te_3 или In_2Te_3 , S — в подрешетку Те в виде Bi_2S_3 , и т.д.). При смешивании Bi_2Te_3 и Sb₂Te₃ в пропорции (1 - x)/x получается смешанный кристалл $(Bi_{1-x}Sb_x)_2Te_3$. Аналогично можно получить смешанный кристалл на основе двух халькогенидов одного и того же элемента V групны системы Менделеева. Например, в случае Bi_2Te_3 и Bi_2Se_3 образуется смешанный кристалл $Bi_2Te_{3-y}Se_y$. Возможны различные сочетания из элементов Bi, Sb, As и Te, Se, S [3]. Смешанные кристаллы представляют особый интерес, так как именно в них наблюдаются максимальные значения термоэффективности Z.

В качестве легирующих примесей используются In, Se, Ge и др. Недавно было изучено влияние Ag и Sn на гальваномагнитные свойства и энергетический спектр смешанных кристаллов $(Bi_{1-x}Sb_x)_2Te_3$ [4–6].

Эффект Шубникова-де Гааза является эффективным методом исследования поверхности Ферми полупроводников. Знание формы поверхности Ферми и ее анизотропии позволяет получить данные об анизотропии гальваномагнитных и термоэлектрических свойств материала. Однако в теллуридах сурьмы и смешанных кристаллах такие измерения затруднены, так как концентрации носителей тока велики, а подвижности относительно невысокие, так что осцилляции магнитосопротивления начинаются в магнитных полях более 10 Т.

В настоящей работе излучаются угловые зависимости сечений поверхности Ферми смешанных кристаллов $(Bi_{1-x}Sb_x)_2Te_3$ с помощью эффекта Шубникова-де Газза при T = 4.2 К в магнитных полях до 40 Т. Кроме того, исследуется влияние легирования оловом и серебром на термоэлектрические свойства слоистых кристаллов $(Bi_{1-x}Sb_x)_2Te_3$ в температурном интервале 77–300 К.

1. Образцы

В настоящей работе исследовались монокристаллические образцы $(Bi_{1-x}Sb_x)_2Te_3$ $(0.25 \le x \le 1)$ *р*-типа как нелегированные, так и легированные серебром или оловом. Образцы выращивались методом Бриджмена из поликристаллических материалов. Сначала в кварцевой ампуле синтезировались поликристаллические образцы из элементов чистоты 99.999% в стехиометрическом соотношении. Затем выращивался монокристалл. В табл. 1 приведены данные гальваномагнитных измерений (удельное сопротивление ρ , коэффициент Холла *R* и подвижность μ при двух температурах) для образцов смешанных кристаллов $(Bi_{1-x}Sb_x)_2Te_3$.

Таблица 1. Удельные сопротивления ρ (m $\Omega \cdot$ cm), коэффициенты Холла *R* (cm³/C) и подвижности μ (m²/V · s) для монокристаллов (Bi_{1-x}Sb_x)₂Te₃ при 4.2 и 300 K

Номер образца	x	$ ho^{4.2}$	$ ho^{300}$	<i>R</i> ^{4.2}	R ³⁰⁰	$\mu^{4.2}$	μ^{300}
1	1.0	0.031	0.250	0.059	0.086	0.190	0.034
2	0.75	0.052	0.545	0.087	0.110	0.167	0.020
3	0.5	0.068	0.918	0.120	0.190	0.176	0.021
4	0.25	0.067	1.23	0.140	0.235	0.209	0.019

Таблица 2. Содержание серебра и олова в (Bi_{1-x}Sb_x)₂Te₃ (Ag,Sn) при загрузке и по данным атомной абсорбционной спектроскопии (AAC)

Образец	у (загрузка)	y (AAC)
$Sb_2Te_3\langle Ag_y \rangle$	0.035	0.0152
$Bi_{0.5}Sb_{1.5}Te_3\langle Ag_{v}\rangle$	0.015	0.0048
$Sb_{2-x}Sn_yTe_3$	0.0115	0.0075
$(Bi_{0.5}Sb_{0.5})_{2-y}Sn_yTe_3$	0.0075	0.0037

Серебро при легировании добавлялось в стехиометрический состав поликристалла, поэтому далее формулы состава образцов с Ад будут приводиться в виде $(Bi_{1-x}Sb_x)_2Te_3\langle Ag_y\rangle$. Олово добавлялось в соотношениях, соответствующих формуле $(Bi_{1-x}Sb_x)_{2-y}Sn_yTe_3$. Содержание олова и серебра в образцах сначала определялось по загрузке компонентов перед ростом кристалла, а затем уточнялось методом атомной абсорбционной спектроскопии (ААС) для конкретного исследованного образца. В табл. 2 приведено содержание серебра и олова (определенное по загрузке и по АСС) в образцах. Из табл. 2 видно, что содержание Ад меньше его концентрации (по загрузке) в 2 раза в Sb₂Te₃(Ag_v) и в 3.2 раза в $Bi_{0.5}Sb_{1.5}Te_3\langle Ag_v \rangle$, т.е. растворимость Ag в смешанных кристаллах существенно ниже. В табл. 2 показаны образцы с максимальным количеством серебра. Ввести в монокристалл большее количество серебра не удалось, так как это приводило к сегрегации и появлению второй фазы.

После приготовления поликристалла нужного состава выращивался монокристалл. Полученные монокристаллы освобождались от кварцевой ампулы и скалывались по базисной плоскости, которая располагалась всегда вдоль продольной оси слитка. Образцы для измерений в форме параллелепипеда со средним размером $1 \times 1.5 \times 5$ mm вырезались на электроискровом станке; длинная ось выбиралась вдоль оси C_2 . Токовые и потенциальные подводы из медной проволоки диаметром $30 \,\mu$ m припаивались с помощью сплава Bi + 4% Sb с флюсом (глицерин + аммиак).

В табл. З приведены значения удельного сопротивления ρ , коэффициентов Холла R и холловской подвижности μ для кристаллов $(Bi_{1-x}Sb_x)_2Te_3\langle Ag_y \rangle$ при различных температурах. Приведенные значения коэффициентов Холла R измерены в магнитном поле 0.3 Т. Необходимо отметить, что R практически не зависит от магнитного поля для всех образцов, за исключением $(Bi_{1-x}Sb_x)_2Te_3 c x \ge 0.5$.

В табл. 4 приведены холловская концентрация дырок 1/eR, удельное сопротивление $\rho^{4.2}$ при T = 4.2 К и ρ^{300} при T = 300 К, коэффициент Холла R в магнитном поле 10 Т и холловская подвижность μ при T = 4.2 К для образцов, легированных оловом. При сравнении данных табл. 1 и 4 видно, что в кристаллах $(\text{Bi}_{1-x}\text{Sb}_x)_{2-y}\text{Sn}_y\text{Te}_3$ добавление олова приводит к уменьшению сопротивления и коэффициента Холла при комнатной температуре, т. е. олово, как и серебро, ведет себя как акцептор.

Результаты измерений и их обсуждение

2.1. Гальваномагнитные свойства. На рис. 1 приведены графики зависимости электрического сопротивления от температуры $\rho(T)$ для образцов $(\text{Bi}_{1-x}\text{Sb}_x)_2\text{Te}_3$ с разным значением *x*. Для всех образцов

Таблица 3. Удельные сопротивления ρ (m $\Omega \cdot$ cm), коэффициенты Холла R (cm³/C) и подвижности μ (m²/V · s) для монокристаллов (Bi_{1-x}Sb_x)₂Te₃(Ag_y) при 4.2, 77 и 300 K

Образец	$ ho^{4.2}$	$ ho^{77}$	$ ho^{300}$	$R^{4.2}$	<i>R</i> ⁷⁷	R^{300}	$\mu^{4.2}$	μ^{77}	μ^{300}
$\begin{array}{ll} Sb_2Te_3\langle Ag_y\rangle & (y=0.0152)\\ Bi_{0.5}Sb_{1.5}Te_3\langle Ag_y\rangle & (y=0.0048) \end{array}$	0.026	0.038	0.145	0.009	0.012	0.013	0.035	0.031	0.009
	0.044	0.073	0.333	0.016	0.025	0.044	0.036	0.034	0.013

Таблица 4. Холловские концентрации 1/eR, удельные сопротивления ρ , коэффициенты Холла R и подвижности μ для $(\mathrm{Bi}_{1-x}\mathrm{Sb}_x)_{2-y}\mathrm{Sn}_y\mathrm{Te}_3$ (x=0.5)

Образец	1/eR, $10^{19} \mathrm{cm}^{-3}$	$ ho^{4.2},$ m $\Omega \cdot$ cm	$ ho^{300},\m\Omega\cdot { m cm}$	$R^{4/2}$, cm ³ /C	$\mu^{4.2}, \\ m^2/V \cdot s$
$\begin{array}{c} Sb_{2-y}Sn_yTe_3 & (y=0.0075) \\ (Bi_{1-x}Sb_x)_{2-y}Sn_yTe_3 & (y=0.0039) \end{array}$	56.4	0.0676	0.181	0.012	0.018
	15.1	0.071	0.381	0.041	0.058

Рис. 1. Температурные зависимости электрического сопротивления монокристаллов $(Bi_{1-x}Sb_x)_2Te_3$.

Рис. 2. Зависимости холловской подвижности μ при T = 4.2 К от содержания Ад для $(\text{Bi}_{1-x}\text{Sb}_x)_2\text{Te}_3\langle \text{Ag}_y \rangle$ при x = 0.75 (*I*) и 1 (2).

величина ρ уменьшается с понижением температуры и при низких температурах насыщается. Аналогичные зависимости наблюдаются в легированных Ag образцах. В температурном интервале 77–300 К удельное сопротивление зависит от температуры по закону $\rho \sim T^m$, где $m \approx 1.1$ для образцов Sb₂Te₃ (Ag_y) и Bi_{0.5}Sb_{1.5}Te₃ (Ag_y) и $m \approx 1.9$ для образцов, не содержащих Ag. Как известно, m = 1.5 соответствует рассеянию на акустических фононах. Отклонение полученного значения *m* от 1.5 может быть вызвано добавочным рассеянием на ионизированных примесях.

Коэффициенты Холла R положительны для всех образцов и зависят от температуры: с уменьшением температуры от комнатной до температуры жидкого азота *R* уменьшается и далее почти не изменяется. Такая зависимость R(T) характерна для монокристаллов Sb₂Te₃ (см., например, [7]). *R* монотонно уменьшается с увеличением содержания Ag, что означает увеличение концентрации дырок (табл. 3). В нелегированных смешанных кристаллах $(Bi_{1-x}Sb_x)_2Te_3$ концентрация дырок возрастает с ростом x, что видно из увеличения R (табл. 1). С другой стороны, для всех образцов R уменьшается с понижением температуры до 77 К и затем слабо увеличивается. Коэффициенты Холла не зависят от магнитного поля до $B = 6 \,\mathrm{T}$ для всех образцов, кроме BiSbTe₃ и Bi_{1.5}Sb_{0.5}Te₃. Для последних *R* возрастает с увеличением напряженности магнитного поля, что можно объяснить существованием второй валентной зоны и отличным от единицы фактором анизотропии [5,8].

Холловская подвижность μ в образцах с серебром уменьшается с увеличением содержания Ag при всех значениях температуры, причем μ более существенна в $(\text{Bi}_{1-x}\text{Sb}_x)_2\text{Te}_3\langle \text{Ag}_y\rangle$, чем в Sb₂Te₃ $\langle \text{Ag}_y\rangle$ (рис. 2). В образцах $(\text{Bi}_{1-x}\text{Sb}_x)_2\text{Te}_3$ холловская подвижность μ растет с увеличением содержания Bi при гелиевой температуре, а при азотной и комнатной температурах уменьшается при увеличении x от 0.25 до 0.5, но возрастает при x = 0.75 (табл. 1).

Из приведенных данных по легированию $(Bi_{1-x}Sb_x)_2Te_3$ серебром видно, что эффективность серебра (т. е. количество дополнительных дырок, приходящихся на один атом серебра) в среднем больше в кристаллах Sb_2Te_3 , чем в кристаллах $(Bi_{1-x}Sb_x)_2Te_3$. Этот результат можно объяснить тем, что в Sb_2Te_3 серебро в основном входит в подрешетку Sb, образуя точечные заряженные дефекты замещения и проявляя акцепторные свойства. В Bi_2Te_3 атомы серебра находятся в междоузлиях, вызывая донорный эффект.

Образование дефектов замещения атомов Sb атомами Ag должно вызывать изменения параметров кристаллической решетки. Поскольку ковалентный радиус атома Ag ($r_{Ag} = 0.134$ nm) немного меньше, чем радиус атома Sb ($r_{Sb} = 0.140$ nm), возможно уменьшение объема элементарной ячейки в кристалле при появлении дефекта замещения Ag_{Sb}. В табл. 5 приведены параметры решетки образцов Sb_{2-y}Ag_yTe₃. Видно, что при увеличении содержания серебра объем элементарной ячейки слабо уменьшается. Это и соответствует образованию антиструктурных дефектов типа Ag_{Sb}.

Таблица 5. Параметры решетки кристаллов Sb_{2-y}Ag_yTe₃

у	<i>a</i> , Å	<i>c</i> , Å	$V, Å^3$
0	4.2648(3)	30.450(1)	479.6(1)
0.05	4.2623(7)	30.446(4)	479.0(2)
0.10	4.2619(5)	30.443(4)	478.9(1)

V navomo z z	Межатомное расстояние, Å			Атомный заряд			Полярность связей	
Кристалл	Me–Te ¹ ,	Me-Te ²	$Te^1 - Te^2$	Te ¹	Me	Te ²	Me-Te ¹	Me-Te ²
Sb ₂ Te ₃ Bi ₂ Te ₃	2.98 3.07	3.17 3.25	3.74 3.64	$-0.044 \\ -0.57$	0.087 1.04	$-0.085 \\ -0.94$	0.538 0.522	0.240 0.154

Таблица 6. Атомные заряды и структурные параметры кристаллов Sb₂Te₃ и Bi₂Te₃

В табл. 6 приведены атомные заряды и структурные параметры кристаллов Sb₂Te₃ и Bi₂Te₃. Атомные заряды вычислены с учетом числа электронов на атом и даны в единицах элементарного заряда. Значение полярности межатомной связи соответствует электронной плотности в пространстве, занимаемом связью [9]. Атомы Ві и Sb обозначены как Me. Видно, что связи атомов Bi-Te в кристаллах Bi₂Te₃ более полярные по сравнению со связями Sb-Te в кристаллах Sb₂Te₃. Отрицательный заряд у атомов Te^1 и Te^2 в решетке Bi_2Te_3 на порядок больше по сранению с отрицательным зарядом у тех же атомов в решетке Sb₂Te₃. Аналогично положительный заряд у атомов Ві в Ві2 Те3 на порядок больше, чем у атомов Sb в Sb₂Te₃. Все это приводит к разному типу дефектов и в конечном счете к разному поведению Ад в теллуридах висмута и сурьмы: в Sb₂Te₃ серебро ведет себя как акцептор, а в Ві2Те3 легирование серебром вызывает донорный эффект [9].

2.2. Термоэдс. Коэффициент Зеебека α измерялся в температурном интервале 77-300 К при температурном градиенте, направленном вдоль слоев кристалла, т. е. вдоль оси C_2 . На рис. 3 представлены температурные зависимости α для образцов (Bi_{1-x}Sb_x)₂Te₃, Bi_{0.5}Sb_{1.5}Te₃ и Sb₂Te₃, легированных серебром и оловом. Как видно, значение α для всех образцов почти линейно снижается с уменьшением температуры. При легировании серебром коэффициент Зеебека становится меньше, чем в чистых образцах. Это справедливо как для Sb₂Te_e, так и для смешанных кристаллов Bi0.5Sb1.5Te3. Для нелегированного образца Sb₂Te₃ $\alpha = 98 \,\mu \text{V/K}$ при комнатной температуре, что соответствует известным данным [10], и уменьшается до значения 21 µV/К при понижении температуры до температуры жидкого азота. Для образца Sb₂Te₃ $\langle Ag_{v} \rangle$ с y = 0.0152 (максимальное содержание серебра) $\alpha \approx 38 \,\mu \text{V/K}$ при $T = 290 \,\text{K}$ и $5 \,\mu \text{V/K}$ при T = 77 К. Таким образом, при добавлении Ag в Sb₂Te₃ значения α уменьшаются в 2.5–4 раза.

Аналогично ведет себя коэффициент Зеебека и в смешанных кристаллах ${\rm Bi}_{0.5}{\rm Sb}_{1.5}{\rm Te}_3\langle {\rm Ag}_y\rangle$. В нелегированном образце α уменьшается в ~ 10 раз, а в образце с наибольшим содержанием Ag (y = 0.0048) α уменьшается в 6.5 раза при изменении температуры от комнатной до азотной. Видно, что в легированном, и в чистом образцах коэффициент α принимает почти одно и то же значение при T = 77 K.

Максимльное значение $\alpha = 220 \,\mu V/K$ было измерено для образца BiSbTe₃ при комнатной температуре, величина α снижалась до $35 \,\mu V/K$ при охлаждении

Рис. 3. Температурные зависимости коэффициента Зеебека для образцов $(Bi_{1-x}Sb_x)_2Te_3$ (*a*) и легированных Ag и Sn образцов $Bi_{0.5}Sb_{1.5}Te_3$ (*b*) и Sb₂Te₃ (*c*).

образца до 77 К. Для образца $Bi_{1.5}Sb_{0.5}Te_3$ с наибольшим содержанием Ві кривая зависимости $\alpha(T)$ лежит между аналогичными кривыми для образцов $Bi_{0.5}Sb_{1.5}Te_3$ и BiSbTe₃.

Видно, что во всех образцах легирование серебром и оловом приводит к уменьшению коэффициента Зеебека, что связано с увеличением концентрации дырок и лишний раз свидетельствует об акцепторных свойствах серебра и олова.

2.3. Угловые зависимости сечений поверхности Ферми смешанных кристаллов. Эллипсоидная непараболическая зонная модель достаточно точно описывает энергетический спектр верхней валентной зоны кристаллов $(Bi_{1-x}Sb_x)_2Te_3$. Закон дисперсии, соответствующий этой модели, имеет вид

$$\frac{2m_0E}{\hbar^2} = \alpha_{11}k_x^2 + \alpha_{22}k_y^2 + \alpha_{33}k_z^2 + 2\alpha_{23}k_yk_z.$$
 (1)

Рассмотрим один из шести эллипсоидов поверхности Ферми (рис. 4) и введем следующие обозначения: a, bи c — главные оси эллипсоидов, S_a, S_b и S_c площади экстремальных сечений эллипсоида. Через S_H обозначим площадь сечения эллипсоида плоскостью, проходящей через центр эллипсоида и перпендикулярной вектору магнитного поля, который на рисунке направлен вдоль оси z (C_3). Одна из осей каждого из двух эллипсоидов, центрированных в плоскости xz, параллельна координатной оси y (C_2). Главные оси других четырех эллипсоидов наклонены в плоскости xz (C_1C_3) на угол θ относительно кристаллографических осей. Значения полуосей эллипсоида можно выразить следующим образом:

$$a = \frac{\sqrt{2m_0 E_F/\alpha'_{11}}}{\hbar}, \quad b = \frac{\sqrt{2m_0 E_F/\alpha'_{22}}}{\hbar},$$
$$c = \frac{\sqrt{2m_0 E_F/\alpha'_{33}}}{\hbar}, \quad (2)$$

где $\alpha'_{ij} = m_0/m_{ij}$ — компоненты тензора обратных эффективных масс в главных осях эллипсоида, зависящие от энергии вследствие некоторой непараболичности спектра. Обозначим их в кристаллографических осях α_{ij} . Тогда $\alpha_{11} = \alpha'_{33}$, $\alpha'_{22} + \alpha'_{33} = \alpha_{22} + \alpha_{33}$, $\alpha'_{22}\alpha'_{33} = \alpha_{22}\alpha_{33}$ – $(\alpha_{23})^2$. Угол θ в кристаллах (Bi_{1-x}Sb_x)₂Te₃ известен только до x = 0.6 [11] и составляет $\approx 42^{\circ}$ для (Bi_{0.4}Sb_{0.6})₂Te₃. Для исследованных в настоящей работе смешанных кристаллов (Bi_{1-x}Sb_x)₂Te₃ величина θ определялась экстраполяцией. Используя простые преобразования, получим выражения для площадей экстремальных сечений эллипсоида

$$S_{a} = \pi c b = \frac{2\pi m_{0} E_{F}}{\hbar^{2} \sqrt{\alpha'_{22} \alpha'_{33}}}, \quad S_{b} = \pi a c = \frac{2\pi m_{0} E_{F}}{\hbar^{2} \sqrt{\alpha'_{11} \alpha'_{33}}},$$
$$S_{c} = \pi a b = \frac{2\pi m_{0} E_{F}}{\hbar^{2} \sqrt{\alpha'_{11} \alpha'_{22}}}.$$
(3)

Рис. 4. Один эллипсоид поверхности Ферми Sb₂Te₃.

Площадь сечения S_H может быть определена с учетом выражения для частоты осцилляций Шубникова-де Гааза $F = [\Delta(1/B)]^{-1}$

$$S_H = 2\pi e [F/\hbar] = 2\pi e [\hbar \Delta(1/B)]^{-1}.$$
 (4)

Представляет интерес зависимость площади сечения S_H каждого эллипсоида плоскостью, перпендикулярной направлению вектора магнитного поля, от угла наклона φ этого вектора относительно оси z (C_3). В эксперименте направление поля изменялось в плоскости zx (C_3C_1). В таком случае шесть эллипсоидов можно условно разбить на две группы: два из них лежат в этой плоскости симметрично относительно нее. Вследствие симметрии эллипсоиды в каждой группе эквивалентны между собой, т.е. сечения S_H для них одинаковы при любом φ . При значении угла φ , отличном от нуля, площади сечений эллипсоидов первой группы

$$S_{H1} = \left[\left(\cos(\varphi + \theta) / S_c \right)^2 + \left(\sin(\varphi + \theta) / S_a \right)^2 \right]^{-1/2}, \quad (5)$$

где φ — экспериментальное значение угла между направлением вектора магнитного поля и осью z; θ — угол наклона осей эллипсоида относительно кристаллографических осей.

Для второй группы эллипсоидов получаем

$$S_{H2} = \frac{4\pi m_0 E_F}{\hbar^2} \left[4 \left(\alpha'_{22} \alpha'_{33} \sin^2 \theta + \alpha'_{11} \alpha'_{22} \cos^2 \theta \right) \cos^2 \varphi \right. \\ \left. + \left(\alpha'_{11} \alpha'_{22} \sin^2 \theta + 3 \alpha'_{11} \alpha'_{33} + \alpha'_{22} \alpha'_{33} \cos^2 \theta \right) \sin^2 \varphi \right. \\ \left. + \alpha'_{22} (\alpha'_{11} - \alpha'_{33}) \sin 2\theta \sin 2\varphi \right]^{1/2}.$$
(6)

На рис. 5, *а* представлены осцилляции поперечного магнетосопротивления ρ для образца $(\text{Bi}_{0.5}\text{Sb}_{0.5})_2\text{Te}_3$ при вращении вектора **В** магнитного поля в плоскости C_1C_3 при температуре 4.2 K, а их Фурье-спектры показаны на рис. 5, *b*. Как видно из рисунков, в этих кристаллах наблюдаются осцилляции с несколькими частотами.

Рис. 5. Зависимости осцилляций поперечного магнетосопротивления ρ от обратного магнитного поля B в $(Bi_{0.5}Sb_{0.5})_2Te_3$ при различных углах φ между осью C_3 и вектором **В** при вращении магнитного поля в плоскости C_1C_3 (*a*) и соответствующие им Фурье-спектры (*b*).

По частотам осцилляций эффекта Шубникова-де Гааза для монокристалла (Bi_{0.5}Sb_{0.5})₂Te₃ были вычислены значения площадей экстремальных сечений поверхности Ферми, которые приведены в зависимости от угла φ между В и осью С₃ на рис. 6. Сплошные кривые соответствуют теоретическим угловым зависимостям площадей сечений эллипсоидов с зонными параметрами $\alpha'_{11} = 2.26$, $\alpha'_{22} = 32.5$ и $\alpha'_{33} = 11.6$, которые ранее использовались для расчетов Sb₂Te₃ [6,7]. При этих параметрах анизотропия экстремальных сечений $S_{\text{max}}/S_{\text{min}} = S_b/S_a$ эллипсоида составляет 3.8. Из рис. 6 видно, что при такой анизотропии экспериментальные точки хорошо ложатся на теоретические зависимости. Отсюда следует, что отношение $S_{\rm max}/S_{min} \approx 3.8$ можно считать подходящим для образцов данного состава. На этом рисунке также штриховыми линиями представлены удвоенные и утроенные сечения поверхности Ферми, соответствующие гармоникам основной частоты осцилляций магнетосопротивления. Видно, что дополнительные наблюдающиеся в эксперименте частоты осцилляций фактически являются гармониками, кратными основной частоте. Отметим, что гармоники осцилляций наблюдаются только в смешанных кристаллах $(Bi_{1-x}Sb_x)_2Te_3$, а в Sb₂Te₃ и Bi₂Te₃ в осцилляциях Шубникова-де Гааза видна только основная частота [6]. Эффект резкого увеличения амплитуды осцилляций гармоник в смешанных кристаллах может быть объяснен увеличением амплитуды осцилляций экранировки заряженных примесных центров и добавочным рассеянием, возникающим в сплавах [12]. Расчет этого эффекта в рамках простых предположений для упругого рассеяния и при параболической зоне приведен в работе [13].

Рис. 6. Теоретические (линии) и экспериментальные (точки) зависимости площадей экстремальных сечений *S* поверхности Ферми ($Bi_{0.5}Sb_{0.5}$)₂Te₃ от угла φ между осью *C*₃ и вектором **B** при вращении магнитного поля в плоскости *C*₁*C*₃. Сплошные линии (*I*) проведены для эллипсоидальной поверхности с анизотропией $S_{max}/S_{min} = 3.8$, штриховые линии соответствуют удвоенному (*2*) и утроенному (*3*) значениям сечений.

Таблица 7. Частоты осцилляций F, энергии Ферми E_F , рассчитанные по частотам концентрации легких дырок p_{SdH} , и холловские концентрации 1/eR для $(Bi_{1-x}Sb_x)_2Te_3$

Номер образца	x	F(T)	E_F , meV	$p_{\rm SdH}, 10^{19} {\rm cm}^3$	$1/eR$, 10^{19} cm ⁻³
2	0.75	56.8	100	3.28	7.2
3	0.5	40.2	65	1.71	5.2
4	0.25	28.5	41.5	0.87	4.5

Вычисленные с учетом эффекта Шубникова-де Гааза концентрации p_{SdH} легких дырок сравнивались с соответствующими холловскими концентрациями 1/eR. Все эти величины приведены в табл. 7, из которой видно, что значения p_{SdH} всегда меньше соответствующих значений 1/eR. Это указывает на заполнение второй нижней валентной зоны при таких высоких концентрациях дырок. Однако, как следует из проведенных экспериментов, даже в сильных полях осцилляции магнетосопротивления от нижней зоны тяжелых валентных дырок не наблюдаются, что несомненно связано с высокими значениями эффективных масс дырок в этой зоне. Кроме того, в табл. 7 приводятся рассчитанные по экспериментальным данным для частот осцилляций Шубникова-де Гааза значения энергий Ферми легких дырок. Видно, что с уменьшением содержания сурьмы в смешанных кристаллах $(Bi_{1-x}Sb_x)_2Te_3$ энергия Ферми и концентрации дырок уменьшаются.

Таким образом, смешанных в кристаллах $(Bi_{1-x}Sb_x)_2Te_3$ легирование серебром вызывает акцепторный эффект, в то время как в Bi2Te3 серебро проявляет донорные свойства. Олово, введенное в твердые растворы $(Bi_{1-x}Sb_x)_2Te_3$, также проявляет акцепторные свойства. Легирование смешанных кристаллов p-(Bi_{1-x}Sb_x)₂Te₃ и оловом, и серебром приводит к уменьшению термоэдс, что связано с увеличением концентрации дырок. Отметим, что для смешанных кристаллов большую роль также играет рассеяние носителей тока, характерное для сплавов. Поверхность Ферми легких дырок в смешанных кристаллах $(Bi_{1-x}Sb_x)_2Te_3$ состоит из шести эллипсоидов с анизотропией сечений 3.8. Нижней зоны тяжелых валентных дырок в осцилляциях Шубникова-де Гааза не наблюдается.

Авторы благодарят Dr. A. de Visser за предоставленную возможность проведения измерений в сильных магнитных полях.

Список литературы

- Б.М. Гольцман, В.А. Кудинов, И.А. Смирнов. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃. Наука, М. (1972). 320 с.
- [2] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 38, 2366 (1996).
- [3] Г.Т. Алексеева, М.В. Ведерников, П.П. Константинов, В.А. Кутасов, Л.Н. Лукьянова. ФТП **30**, *5*, 918 (1996).

- [4] В.А. Кульбачинский, А.Ю. Каминский, В.Г. Кытин, П. Лостак, Ч. Драшар, А. де Виссер. ЖЭТФ 117, 6, 1242 (2000).
- [5] V.A. Kulbachinskii, A.Yu. Kaminsky, K. Kindo, Y. Narumi, K. Suga, S. Kawasaki, M. Sasaki, N. Miyajima, G.R. Wu, P. Lostak, P. Hajek. Phys. Stat. Sol. (b) 229, 3, 1467 (2002).
- [6] V.A. Kulbachinskii, A.Yu. Kaminskii, R.A. Lunin, K. Kindo, Y. Narumi, K. Suga, S. Kawasaki, M. Sasaki, N. Miyajima, P. Lostak, P. Hajek. Semicond. Sci. Technol. 17, 1133 (2002).
- [7] V.A. Kulbachinskii, N. Miura, H. Nakagawa, C. Drashar, P. Lostak. J. Phys. C 11, 5273 (1999).
- [8] N.B. Brandt, V.A. Kulbachinskii. Semicond. Sci. Technol. 7, 907 (1992).
- [9] J. Navratil, I. Klichova, S. Karamazov, J. Sramkova, J. Horak. J. Solid State Chem. 140, 29 (1998).
- [10] М.К. Житинская, С.А. Немов, Л.Д. Иванова. ФТТ **44**, 41 (2002).
- [11] H. Kohler, A. Freudenberger. Phys. Stat. Sol. (b) 84, 195 (1977).
- [12] В.А. Кульбачинский, Н.Е. Клокова, С.Я. Скипидаров, Я. Горак, П. Лоштяк, С.А. Азоу. Вестн. МГУ. Сер. 3. Физика и астрономия 30, 68 (1989).
- [13] P. Streda. Czech. J. Phys. B 33, 49 (1983).

793