Особенности фазового расслоения при нагреве аморфного сплава Fe₉₀Zr₁₀

© Г.Е. Абросимова, А.С. Аронин

Институт физики твердого тела Российской академии наук, 142432 Черноголовка, Московская обл., Россия E-mail: gabros@issp.ac.ru

(Поступила в Редакцию 21 апреля 1998 г.)

Методами рентгенографии, Оже-спектроскопии и просвечивающей электронной микроскопии исследованы изменения структуры аморфных сплавов $Fe_{90}Zr_{10}$, полученных быстрой закалкой расплава. Образцы подвергали изохронным (1 час) и изотермическим отжигам при температурах 100–650°C. Показано, что при часовых отжигах при температурах 300–500°C аморфный сплав кристаллизуется с образованием пересыщенного твердого раствора Zr в α -Fe и интерметаллида Fe₃Zr. При изотермических отжигах при 100°C длительностью до 7000 час образуется нанокристаллическая структура с размером зерна 110–30 nm, причем границы между зернами являются размытыми. После такого отжига сплав содержит два твердых раствора Zr в Fe с кубической и слабо тетрагональной решетками. Кристаллизации при низкотемпературных отжигах предшествует фазовое расслоение сплава в пределах аморфного состояния. Определены периоды решеток твердых растворов. Обсуждается возможность кристаллизации сплава при длительных отжигах по механизму спинодального распада.

Вопросы эволюции структуры аморфных сплавов относятся к ряду наиболее интересных проблем физики сильно неупорядоченных систем. Характер процессов, протекающих при переходе из исходного аморфного состояния в равновесное кристаллическое, зависит от большого числа как внешних, так и внутренних параметров. При анализе полученных экспериментальных данных необходимо учитывать два важных обстоятельства. Во-первых, при использовании определенных типов термообработки исследователь может пропустить некоторые стадии эволюции структуры и наблюдать лишь определенные этапы ее развития. Во-вторых, в зависимости от условий термообработки, а также внутренних параметров системы сам характер изменения структуры аморфных сплавов может сильно различаться, а кристаллизация будет приводить к образованию существенно различных структурных состояний. Поскольку свойства материалов в своем большинстве являются структурно-чувствительными, знания об особенностях эволюции структуры и возможностях создания того или иного структурного состояния оказываются чрезвычайно важными. Исследуемый в настоящей работе аморфный сплав Fe₉₀Zr₁₀ представляет интерес как с точки зрения анализа структуры, так и изучения свойств [1-4].

Известно, что кристаллизация из неупорядоченной фазы в упорядоченную может идти по механизму зарождения и роста или путем спинодального распада [5]. Механизм кристаллизации может в свою очередь определяться как условиями термообработки, так и состоянием аморфной фазы непосредственно перед кристаллизацией. Настоящая работа посвящена исследованию влияния различных условий термообработки на структуру аморфного сплава $Fe_{90}Zr_{10}$ и характер его кристаллизации, а также созданию нанокристаллической структуры в этом материале.

1. Методика эксперимента

Аморфный сплав Fe90Zr10 был получен быстрой закалкой расплава по одновалковой схеме в виде ленты толщиной 25 µm и шириной 10 mm. Образцы подвергали изохронным (1 час) и изотермическим отжигам длительностью до 7000 часов при различных температурах в атмосфере аргона. При отжиге образцы помещались в печь, заранее разогретую до заданной температуры. Исходные и отожженные образцы исследовали методом рентгенографии, Оже-спектроскопии и просвечивающей электронной микроскопии. Рентгенографические исследования проводили методом Дебая-Шеррера с использованием Fe K_{α} -излучения, а также с помощью рентгеновского дифрактометра ДРОН-3.0 с использованием Мо К_а-излучения. Электронно-микроскопические исследования проводили на электронном микроскопе JEM-100CX. Образцы для электронной микроскопии готовили ионным утонением. Для исследования состава сплава использовали Оже-электронный спектрометр JAMP-10S со снятием поверхностных слоев пучком ионов аргона.

2. Экспериментальные результаты

Для выяснения влияния условий термообработки на изменения структуры и характер кристаллизации проводили различные серии изотермических и изохронных отжигов, поэтому представляется удобным разделить полученные экспериментальные результаты на группы.

1) Кристаллизация аморфного сплава $Fe_{90}Zr_{10}$ при изохронных отжигах. В этой серии экспериментов изучалось изменение структуры аморфного сплава после часовых отжигов при температурах 300–500°С. После отжигов при температурах ниже 350°С сплав остается аморфным. После часового

Рис. 1. Изменение первого максимума структурного фактора S(Q) аморфного сплава при отжиге при температуре 100°С. I — исходный образец, 2, 3 — образцы, отожженные в течение 1500 и 4000 h соответственно.

отжига при 350°С в аморфной матрице образуются кристаллы пересышенного твердого раствора Zr в α -Fe с периодом решетки a = 0.292 nm. С повышением температуры отжига период решетки α -фазы уменьшается и после отжига при 600°С имеет значение, соответствующее периоду решетки чистого α -Fe (0.286 nm). После отжига при 500°С в образцах наряду с кристаллами α -Fe(Zr) появляются кристаллы Fe₃Zr.

2) Изменение структуры сплава при изотермических отжигах. В этом разделе речь пойдет об изменении структуры аморфного сплава Fe₉₀Zr₁₀ при длительных отжигах. Здесь следует разделить изменения структуры, происходящие в пределах аморфного состояния и при кристаллизации.

а) Изменение структуры в пределах аморфного состояния. На рис. 1 представлено изменение первого максимума структурного фактора S(Q) $(Q = 4\pi \sin \theta / \lambda$ — волновой вектор) при отжиге при температуре 100°С. Для наглядности кривые смещены относительно друг друга вдоль оси ординат; в пределах точности эксперимента интегральная интенсивность максимума при указанных длительностях отжига не менялась. Видно, что в процессе отжига на первом максимуме появляется плечо со стороны меньших углов дифракции. С увеличением продолжительности отжига это плечо смещается в сторону меньших углов дифракции, что сопровождается незначительным смещением самого максимума в противоположную сторону. Аморфность сплава при указанных отжигах контролировалась также с помощью электронной микроскопии. При увеличении длительности отжига свыше 5000 час на ранних стадиях кристаллизации характер кривой сохраняется, увеличивается только интенсивность максимумов.

Следует отметить, что такие же изменения структуры наблюдались и при изотермических отжигах при температуре 250°С, но в этом случае все процессы протекали быстрее.

b) Кристаллизация сплава Fe₉₀Zr₁₀ при изотермических отжигах. На рис. 2, а представлена структура сплава после отжига при 100°C в течение 6850 час. На микрофотографии видны зерна размером 10-30 nm. Зерна имеют нечеткие границы. Микродифракция от такой структуры показана на рис. 2, b. Что является характерным для такой структуры? Во-первых, размытость на микрофотографиях границ между зернами, которая не является дефектом фокусировки изображения. Во-вторых, сохраняющаяся после кристаллизации некоторая диффузность колец на электронограммах. Эту диффузность трудно объяснить только малым размером зерна, поскольку в других случаях зерна размером 5-7 nm дают гораздо более четкие кольца. Для сравнения на рис. 3 приведены

Рис. 2. Светлопольное изображение (a), электронограмма (b) и темнопольное изображение (c) образца, отожженного при 100°С в течение 6850 h.

изображения структуры и микродифракция от закристаллизованного сплава $Fe_{85}B_{15}$. Размер зерен в этом случае составляет 10–20 nm. В-третьих, на некоторых электронограммах, полученных от таких мест образца,

Рис. 3. Светлопольное изображение (a), электронограмма (b) образца закристаллизованного сплава Fe₈₅B₁₅.

Рис. 4. Электронограмма образца $Fe_{90}Zr_{10}$, отожженного при $100^{\circ}C$ в течение 7000 h.

Рис. 5. Распределение компонентов по глубине образца.

в которых превращение прошло в большей степени, присутствует расщепление рефлексов (рис. 4). Появляющиеся линии свидетельствуют о выделении двух разных твердых растворов Zr в Fe. Границы зерен при этом становятся более четкими. На основании анализа электронограмм заключили, что два твердых раствора Zr в Fe имеют кубическую и слабо тетрагональную решетки. Параметр кубической решетки одного из них составляет 0.302 nm. Второй раствор имеет близкую к кубической тетрагональную решетку с параметрами *a* — 0.292 nm и *c* — 0.288 nm.

Известно, что цирконий очень подвержен окислению. Для исследования возможности образования окислов и их влияния на кристаллизацию при длительной термообработке образцы исследовали методом Оже-спектроскопии. На рис. 5 показано распределение по глубине образца компонентов сплава, а также кислорода и углерода, всегда присутствующего в камере из-за использования в приборе диффузионного насоса. На поверхности образца имеется небольшое количество кислорода, но оно уменьшается до фонового значения уже на глубине около 100 nm.

3. Обсуждение результатов

Как показано выше, кристаллизация сплава при изохронных отжигах начинается с образования пересыщенного твердого раствора Zr в α -Fe, причем степень пересыщения уменьшается с повышением температуры. Подобная ситуация наблюдалась и на других сплавах (Fe-B [6], Co-Fe-Si-B [7] и др.) при таких термообработках, когда образцы помещались в разогретую печь и нагрев образца до температуры отжига осуществлялся за 3-5 min. Образование пересыщенного твердого раствора на начальной стадии, очевидно, связано с неравновесным захватом Zr решеткой α -Fe. C повышением температуры облегчаются процессы диффузионного массопереноса, что приводит к снижению степени пересыщения. После окончания первой стадии кристаллизации в аморфной матрице находятся кристаллы α -Fe(Zr). Очевидно, в данном случае кристаллизация идет по обычному механизму зарождения и роста. При повышении температуры наряду с кристаллами α -Fe(Zr) появляются кристаллы Fe₃Zr, что наблюдалось и ранее [8]. Выделений фаз Fe₂₃Zr₆ [9] иои ω [10] не обнаружено.

Иная картина наблюдается при длительных изотермических отжигах. Образование и развитие плеча на первом максимуме S(Q) свидетельствует о том, что в аморфном сплаве происходит фазовое расслоение на области с разным типом ближнего порядка и составом. Развитие такого процесса и приводит в конце концов к образованию нанокристаллической структуры. В разделе 2.2 отмечалось, что уже в самом начале кристаллизации происходит цепочка фазовых превращений. Вначале образуются два раствора Zr в α -Fe с существенно различной степенью пересыщения, а затем соединение Fe₃Zr

$$\alpha'$$
-Fe(Zr) + α'' -Fe(Zr) $\rightarrow \alpha$ -Fe + Fe₃Zr,

причем этот процесс является непрерывным. На ранних стадиях эволюции структуры от аморфного к кристаллическому состоянию граница между выделениями α' и α'' -фаз является размытой, соответствующие кольцевые отражения на электронограмме — широкими. Размер зерна, определенный по темнопольным изображениям (рис. 2, c), составляет 10–30 nm. Эти факты можно объяснить, полагая, что выделяющиеся частицы неоднородны по составу и по степени упорядоченности. При дальнейшей выдержке при повышенной температуре границы становятся более четкими, а широкие кольца на электронограммах разбиваются на несколько линий (рис. 4).

Ранее предполагалось, что при кристаллизации аморфного сплава $Fe_{90}Zr_{10}$ возможно образование оксидов железа [11]. Однако результаты, представленные на рис. 5, характеризующие распределение компонентов по глубине, свидетельствуют о том, что наблюдаемая структура не может быть связана с образованием окислов (фольги для электронной микроскопии готовились из центральной по толщине части образца).

Попытаемся оценить состав двух выделяющихся твердых растворов Zr в Fe, предполагая, что параметр решетки линейно зависит от концентрации в соответствии с законом Вегарда, и используя для получения соответствующих значений параметр объемно-центрированной решетки Zr. При этих условиях получается, что в одном растворе содержится приблизительно 4 at.% Zr, а во втором — 20 at.%. Если учесть, что исследуемый сплав содержит 10 at.% Zr, то количество фазы, содержащей 4 at.% Zr, должно быть больше, чем фазы с 20 at.% Zr. Это соответствует наблюдаемым на электронограммах большим интенсивностям отражений от фазы с 4 at.% Zr. Если продолжать отжиг еще дольше, то появляется фаза Fe₃Zr. Вероятно, она образуется из твердого раствора, содержащего 20 at.% Zr.

Характер фазовых превращений, происходящих при длительном низкотемпературном отжиге (непрерывное изменение состава и степени упорядоченности, отсутствие резких границ раздела между выделениями на начальных стадиях кристаллизации и уменьшение размытости границ зерен со временем отжига и др), можно истолковать как относящийся к группе непрерывных превращений (спинодальный распад или непрерывное упорядочение), которые могут происходить, в частности, в тех случаях, когда начальная фаза не имеет кристаллической решетки [12,13]. Предположения о спинодальном распаде при кристаллизации аморфных сплавов высказывали и ранее [13,14]. Исследуемый сплав $Fe_{90}Zr_{10}$ имеет состав, близкий к эвтектическому, и не исключено, что на диаграмме концентрационной зависимости свободной энергии для аморфного состояния в области исследований концентрации может существовать и спинодальная область.

В принципе нельзя исключить возможности образования при длительном низкотемпературном отжиге наблюдаемой нанокристаллической структуры и по механизму зарождения и роста. Но при этом трудно объяснить специфические особенности структуры, такие как размытость границ зерен на начальных стадиях и уменьшение этой размытости при отжиге, эволюцию дифракционной картины с длительностью термообработки. Конечно, полученных данных недостаточно для заключения о механизме распада аморфного сплава Fe₉₀Zr₁₀ при низкой температуре, но они по крайней мере не противоречат предположению о спинодальном характере превращений в этом сплаве при определенных условиях.

Авторы выражают благодарность Российскому фонду фундаментальных исследований (проект № 96-02-19582) за финансовую поддержку работы.

Список литературы

- [1] K.H.J. Buschow. J. Less-Comm. Met. 79, 243 (1981).
- [2] K. Osamura, S. Ochiai, S. Takayama, J. Mater. Sci. **19**, 1917 (1984).
- [3] R.W. Cochrane, J. Destry, R.L. Legault, M. Trudeau. J. Appl. Phys. 55, 1939 (1984).
- [4] L.F. Barquin, J.C.C. Sal, S.N. Kaul et al. J. Appl. Phys. 79, 5146 (1996).
- [5] Дж. Кристиан. Теория превращений в металлах и сплавах. Пер. с англ. Мир, М. (1978). Т. 1. 806 с.
- [6] Г.Е. Абросимова, А.В. Серебряков. В сб.: Физика аморфных сплавов. Изд-во УдГУ, Ижевск (1984). С. 116.
- [7] Г.Е. Абросимова, А.С. Аронин, А.В. Серебряков. ФММ 68, 552 (1989).
- [8] Z. Altounian, E. Batalla, J.O. Strom-Olsen. J. Appl. Phys. 59, 2364 (1986).
- [9] D.P. Abraham, J.W. Richardson, Jr., S.M. McDeavitt. Scripta Mater. 37, 239 (1997).
- [10] A.V. Dobromyslov, N.V. Kazantseva. Scripta Mater. 37, 615 (1997).
- [11] Y. Khan, M. Sostarich. J. Mater. Sci. Lett. 6, 1223 (1987).
- [12] Физическое металловедение / Под ред. Р.У. Кана, П. Хаазена. Пер. с англ. Металлургия, М. (1987). Т. 2. 624 с.
- [13] ДЖ. Мартин, Р. Доэрти. Стабильность микроструктуры металлических систем. Пер. с англ. Атомиздат, М. (1978). 280 с.
- [14] H.S. Chen, D. Turnbull. Acta Met. 17, 1021 (1969).