Влияние интеркалации серебром на состояние с волной зарядовой плотности в TiSe₂

© Л.С. Красавин, А.Н. Титов, В.М. Антропов

Уральский государственный университет, 620083 Екатеринбург, Россия E-mail: leonid.krasavin@usu.ru

(Поступила в Редакцию 23 апреля 1998 г. В окончательной редакции 23 июня 1998 г.)

Измерены температурные зависимости электропроводности σ (77–300 K) и магнитной восприимчивости χ (2–300 K) Ag_xTiSe₂ в фазе "Ag_{1/4}TiSe₂" с целью определения возможности сохранения состояния с волной зарядовой плотности при интеркалировании серебром TiSe₂. Обсуждаются особенности поведения χ и σ в указанной фазе по сравнению с исходным TiSe₂.

Диселенид титана является единственным из дихалькогенидов переходных металлов IV группы, в котором наблюдается состояние с соразмерной волной зарядовой плотности (ВПЗ) [1]. Это состояние возникает при охлаждении до 202 К и наблюдается как возникновение сверхструктуры $2a_0 \times 2a_0 \times 2c_0$ за счет периодических смещений атомов титана в плоскости "сэндвича" Se-Ti-Se. Переход сопровождается размытой резистивной аномалией на температурной зависимости проводимости [1,2] и падением паулиевского вклада в магнитную восприимчивость [3]. ВЗП в TiSe₂ связывается с электрон-дырочным спариванием [4,5], для чего важен баланс свободных электронов в зоне проводимости и дырок в валентной зоне. Многочисленные исследования влияния легирования на состояние с ВЗП [1,2,6,7] показали, что любое изменение состава, ведущее к изменению баланса свободных электронов и дырок в этом полуметаллическом материале (интеркалирование, замещение), приводит к разрушению ВЗП-состояния при концентрации примеси в несколько процентов. Традиционно этот факт объясняется крайне высокой чувствительностью перехода к форме поверхности Ферми.

С другой стороны, в последнее время установлено, что многие металлы, интеркалированные в TiSe2, передают свои электроны не в зону проводимости, а в полосу локализованных состояний, по-видимому проявляющихся в результате гибридизации d²₂-орбитали титана и валентных состояний внедренного атома. К таким соединениям относятся Ag_xTiSe_2 [8], Fe_xTiSe_2 [9], Co_xTiSe_2 [10] и, вероятно, Ni_xTiSe₂ [11]. Очевидно, что подобные локализованные электроны могут не нарушать баланса зонных носителей, однако случайное размещение примеси может подавлять регулярные искажения решетки [12]. В то же время во всех перечисленных соединениях наблюдается упорядочение примесных атомов при x = 0.25(x -стехиометрический индекс в формуле M_x TiSe₂) в сверхструктуру $2a_0 \times 2a_0 \times 2c_0$ для M = Fe, Co, Ni [11] и в сверхструктуру $2a_0 \times 2a_0 \times c_0$ для M = Ag [13], практически совпадающие со сверхструктурой, образующейся в результате периодических смещений атомов титана при появлении ВЗП. Представляется интересным исследовать возможность сохранения состояния с ВЗП в подобных материалах.

Совпадение сверхструктуры, появляющейся в результате упорядочения примесных атомов, и сверхструктуры, образующейся в результате периодических смещений атомов титана, затрудняет регистрацию ВЗП-состояния дифракционными методами. Поэтому наиболее доступным экспериментальным методом, как представляется, является измерение температурной зависимости кинетических свойств и магнитной восприимчивости. Ранее эти измерения были выполнены для системы Co_xTiSe₂ [10], где был найден широкий минимум на температурной зависимости электропроводности при температуре около 300 К. Вид температурного изменения проводимости слабо зависел от содержания интеркаланта и был интерпретирован как свидетельство образования поляронов, связанных с центрами Ti-Co-Ti. Магнитная восприимчивость показывает отсутствие уменьшения плотности состояний на уровне Ферми при температуре, соответствующей минимуму на проводимости, что должно было бы наблюдаться в случае образования ВЗП-состояния. Аналогичная ситуация была обнаружена для системы $Fe_x TiSe_2$ [14,15]. Следует, однако, отметить, что в этих материалах интеркалация приводит к существенному искажению решетки-матрицы: с ростом х происходит уменьшение параметра c_0 и увеличение параметра a_0 , что, очевидно, вызывает деформацию зоны Бриллюэна и поверхности Ферми.

В противоположность этим материалам $Ag_x TiSe_2$ в пределах фазы " $Ag_{1/4}TiSe_2$ " (ближайшей к исходному $TiSe_2$) демонстрирует крайне слабую зависимость параметров от содержания интеркаланта [13]. В связи с этим мы измерили электропроводность (интервал температур

Зависимость параметров решетки TiSe2 от содержания серебра

x	Ag _x TiSe ₂		Fe_xTiSe_2 [11]		Co _x TiSe ₂ [11]	
	<i>a</i> ₀ , Å	<i>c</i> ₀ , Å	<i>a</i> ₀ , Å	<i>c</i> ₀ , Å	<i>a</i> ₀ , Å	<i>c</i> ₀ , Å
0	3.5419	6.0095				
0.250	3.5352	6.0041	3.574	5.985	3.545	5.880
0.252	3.5397	6.0098				
0.260	3.5387	6.0091				
0.267	3.5373	6.0087				

Рис. 1. Температурная зависимость электропроводности исходного TiSe₂ (*1*) и Ag_xTiSe₂ (2–4). *x* и T_c (K): *I* — 0 и 202, 2 — 0.244 и \approx 196, 3 — 0.256 и \approx 201, 4 — 0.265 и \approx 208.

77–300 К) и магнитную восприимчивость (интервал температур 2–300 К) $Ag_x TiSe_2$ в фазе " $Ag_{1/4} TiSe_2$ " с целью определить возможность сохранения состояния с ВЗП при выполнении перечисленных условий.

Материал для изготовления образцов состава Ag_{0.244}TiSe₂ был получен обычным методом из элементов. ампульного синтеза Содержание серебра изменялось и контролировалось методом кулонометрического титрования. Аттестация образцов измерение кристаллографических параметров и осуществлялись с помощью дифрактометра ДРОН-3М $(CuK_{\alpha}$ -излучение, графитовый монохроматор). Измерения электропроводности были выполнены четырехзондовым методом. При каждом значении температуры образец выдерживался до достижения равновесия. Методики получения, аттестации образцов И измерения проводимости подробно описаны в [8,13]. Результаты исследования концентрационной кристаллографических параметров зависимости "Ag_{1/4}TiSe₂" суммированы в таблице. Там фазы же приведены параметры соединений, полученных внедрением кобальта и железа. Как видно из таблицы, параметры решетки-матрицы TiSe2 в пределах точности метода не зависят от содержания серебра, в то время как интеркалация кобальта и железа существенно деформирует решетку. Типичные зависимости электропроводности от температуры представлены на рис. 1, 2. Легко видеть, что при температуре Т_с примерно 200 К наблюдается резистивная аномалия, аналогичная той, которая сопровождает образование ВЗП-состояния TiSe₂. Совпадение величин паулиевской в

магнитной восприимчивости в высокотемпературной области в интеркалированном и исходном $TiSe_2$ (рис. 3) указывает на сохранение концентрации свободных носителей в соответствии с высказанным преположением о локализации электронов, вносимых при интеркалировании. Особенность на зависимости $\chi(T)$, связываемая с уменьшением плотности состояний на уровне Ферми за счет открытия псевдощели, сохраняется (см. вставку на рис. 3). Таким образом, близость температуры перехода и совпадение характера

Рис. 2. Температурная зависимость электропроводности $Ag_x TiSe_2$. x = 0.244 (1) и 0.256 (2). В этом масштабе можно видеть смещение температуры ВЗП-перехода T_c .

Рис. 3. Температурная зависимость обратной магнитной восприимчивости с вычетом диамагнитного вклада $(\chi_d \approx -4.86 \cdot 10^{-7} \text{ cm}^3/\text{g})$ исходного TiSe₂ (1) и Ag_{0.256}TiSe₂ (2). На вставке крупным планом показана особенность на температурных зависимостях магнитной восприимчивости для этих же соединений.

температурных зависимостей электропроводности и восприимчивости с теми, которые наблюдаются в $TiSe_2$, позволяют предположить, что наблюдаемый в Ag_xTiSe_2 переход связан с образованием ВЗП-состояния.

Резистивная аномалия в Ag_xTiSe₂ ярче всего выражена для состава с x = 0.256 (рис. 2). Согласно [13], этот состав является стехиометрическим в фазе "Ag_{1/4}TiSe₂", обладает наибольшей степенью упорядочения атомов серебра внутри ван-дер-ваальсовых щелей и соответствует минимуму на концентрационной зависимости энтропии подсистемы интеркаланта. Это обстоятельство позволяет связать ослабление резистивной аномалии при отклонении от стехиометрии с подавлением соразмерной ВЗП случайным потенциалом дефектов подрешетки серебра. Также влиянием относительно высокой степени дефектности в подрешетке интеркаланта можно объяснить общее ослабление амплитуды особенности на проводимости и восприимчивости для Ag_xTiSe₂ по сравнению с исходным TiSe2. Отношение плотностей состояний на уровне Ферми, полученных из паулиевского вклада в магнитную восприимчивость в "нормальном состоянии" и в состоянии с ВЗП, составляет для Ag_{0.256}TiSe₂ величину, равную 1.014, а для TiSe₂ — 1.082.

Как отмечалось в [8], коэффициент Зеебека в фазе "Ag_{1/4}TiSe₂" демонстрирует изменение доминирующего типа носителей с *n*- на *p*-тип при нагревании. Температура компенсации зависит от содержания серебра и повышается с ростом *x*. Аналогичную зависимость от *x* минимума на $\sigma(T)$ можно наблюдать на рис. 1, что является, на наш взгляд, аргументом в пользу электрондырочного спаривания как причины образования волн зарядовой плотности. Авторы выражают благодарность А.В. Королеву (Институт физики металлов УрО РАН) за помощь в проведении магнитных экспериментов.

Настоящая работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 97-03-33615а) и Министерства образования Российской Федерации (грант № 97-0-7.1-169).

Список литературы

- [1] R.H. Friend, A.D. Yoffe. Adv. Phys. 36, 1, 1 (1987).
- [2] F.J. Di Salvo, D.E. Moncton, J.W. Waszczak. Phys. Rev. B14, 10, 4321 (1976).
- [3] D.R.P. Guy, R.H. Friend, M.R. Harrison, D.C. Johnson, M.J. Sienko. J. Phys. C15, L1245; L1231 (1982).
- [4] J.A. Wilson. Solid State Commun. 22, 551 (1977).
- [5] J.A. Wilson, S. Mahajan. Commun. Phys. 2, 23 (1977).
- [6] F. Levy, H.P. Vaterlaus, H. Berger. Physica B105, 151 (1981).
- [7] F.J. Di Salvo, J.V. Waszczak. Phys. Rev. B17, 10, 3801 (1978).
- [8] В.М. Антропов, А.Н. Титов, Л.С. Красавин. ФТТ 38, 4, 1288 (1996).
- [9] A.H. Τитов. ΦΜΜ **81**, *6*, 75 (1996).
- [10] В.Г. Плещёв, А.Н. Титов, А.В. Куранов. ФТТ **39**, *9*, 1618 (1997).
- [11] Y. Arnaud, M. Chevreton, A. Ahouandjinou, M. Danot, J. Rouxel. J. Sol. Stat. Chem., 18, 9 (1976).
- [12] F.J. Di Salvo, T.M. Rice. Phys. Today 32, 32 (1979).
- [13] А.Н. Титов, С.Г. Титова. ФТТ 37, 2, 567 (1995).
- [14] M.A. Buhannic, P. Colombet, M. Danot, G. Calvarin. J. Sol. Stat. Chem., 69, 280 (1987).
- [15] D.R. Huntley, M.J. Sienko, K. Hiebel. J. Sol. Stat. Chem., 52, 233 (1974).