Локальная структура ромбического центра Fe³⁺ в КТаО₃

© В.В. Лагута

Институт проблем материаловедения Академии наук Украины, 252180 Киев, Украина

(Поступила в Редакцию 30 апреля 1998 г.)

Исследовано влияние высокотемпературного отжига в атмосферах кислорода, инертного газа и паров воды на спектры электронного парамагнитного резонанса (ЭПР) Fe^{3+} различной локальной симметрии в виртуальном сегнетоэлектрике KTaO₃. Анализ полученных зависимостей позволил предложить и обосновать модель ромбического центра Fe^{3+} : Fe^{3+} замещает Ta^{5+} вблизи двух вакансий кислорода ($Fe^{3+} - 2V_0$). Расчет параметров кристаллического поля в рамках суперпозиционной модели Ньюмена показал, что в ромбическом центре ион Fe^{3+} смещен из позиции в узле Ta^{5+} в направлении [011] внутрь тетраэдра, образованного четырьмя ионами кислорода, на расстояние приблизительно 0.25 Å. Приведена интерпретация некоторых последних результатов по генерации второй гармоники света, полученных в образцах KTaO₃, легированных железом. Показано, что в интервале температур 4.2–300 К ромбические центры Fe^{3+} являются статическими электрическими диполями и поэтому не могут быть источником диэлектрических потерь в KTaO₃ при $T \approx 40$ K, как это предполагалось ранее в некоторых публикациях.

В последнее время интерес к изучению парамагнитных центров Fe³⁺ в КТаО₃ значительно возрос в связи с наблюдением в этом кристалле при низких температурах (T < 40 K) таких несвойственных его кубической центросимметричной структуре явлений, как генерация второй гармоники света [1], слабое рассеяние Рамана первого порядка [2] и диэлектрические потери [3]. Поскольку все эти явления оказались зависимыми от типа образца, было высказано предположение об их дефектной природе. Среди некоторых сопутствующих неконтролируемых примесей и собственных дефектов, присущих КТаО3, наиболее часто в литературе обсуждались примесные центры железа. Fe³⁺, замещая оба катиона K^+ и Ta⁵⁺, образует ряд парамагнитных центров низкой симметрии, которые могут служить источниками полярных областей при низких температурах, где радиус корреляции поляризации становится большим.

Среди всех известных центров Fe³⁺ в КТаО₃ наименее изученным оказался центр ромбической симметрии, который впервые был описан в работе [4]. Позже спектры ЭПР этих парамагнитных примесей были детально изучены Печеным и др. [5,6]. В частности, были найдены два разных спектра ЭПР Fe³⁺ ромбической симметрии, один из которых, как предполагалось, связан с Fe³⁺ в узле Та⁵⁺, а второй — с Fe³⁺ в узле К⁺. Однако совсем недавно было показано, что на самом деле имеется всего один ромбический центр Fe³⁺, но с сильно зависящими от температуры параметрами спинового гамильтониана (СГ) [7]. Несмотря на такие детальные исследования спектров ЭПР этого центра, его локальная структура оставалась невыясненной. Модель центра, предложенная ранее в [5], а именно Fe^{3+} в узле Ta^{5+} с межузельным ионом-компенсатором вблизи, как будет показано далее, не нашла своего подтверждения в эксперименте.

В настоящей работе исследовано влияние высокотемпературных отжигов в атмосфере He, O_2 и паров воды на спектр ЭПР ромбического центра Fe³⁺. Анализ полученных зависимостей, а также выполненные расчеты параметров кристаллического поля в суперпозиционной модели Ньюмена позволили предложить и обосновать следующую модель центра: Fe^{3+} замещает Ta^{5+} с образованием двух вакансий кислорода (V_O) в смежных гранях кубической решетки КТаO₃. Обсуждается роль ромбических центров железа в низкотемпературных явлениях, которые имеют место в центросимметричном кубическом КТаO₃, таких как генерация второй гармоники света, рамановское рассеяние света первого порядка и диэлектрические потери.

1. Экспериментальные результаты

Основные измерения спектров ЭПР были выполнены в области 9 GHz на образцах $KTaO_3$, в которых наиболее интенсивным был спектр ромбического Fe^{3+} (рис. 1, *a*). В основу анализа ромбического спектра Fe^{3+} был взят спиновый гамильтониан вида

$$\hat{H} = g\beta \mathbf{B}\hat{S} + b_2^0 \hat{O}_2^0 + b_2^2 \hat{O}_2^2, \tag{1}$$

где для T = 300 K $g = 2.00, b_2^0 = 0.440(2) \text{ cm}^{-1}, b_2^2 = 0.196(2) \text{ cm}^{-1}$ и совпадают с теми, которые были получены ранее в [5]. Главные оси центров Z и X всегда направлены вдоль направлений $\langle 011 \rangle$, а ось Y совпадает с одним из кубических направлений $\langle 001 \rangle$ кристалла. Всего имеются шесть магнитно-неэквивалентных ромбических центров Fe³⁺, отличающихся направлением своих главных осей. С понижением температуры b_2^0 и b_2^2 существенно увеличиваются и при T = 4.2 K достигают значений 0.485 cm⁻¹ и 0.277 cm⁻¹ соответственно. Полученные нами температурные зависимости $b_2^0(T)$ и $b_2^2(T)$ представлены на рис. 2, они аналогичны полученным ранее в [7].

Для установления типа дефектов, понижающих локальную симметрию иона Fe^{3+} в $KTaO_3$ и вместе с тем являющихся компенсаторами его недостающего положительного заряда, мы предприняли ряд высокотемпературных отжигов в атмосферах O_2 , Не и H_2O . Такая

Рис. 1. Спектры ЭПР Fe³⁺ в KTaO₃. *a* — "as grown", *b* — после отжига в атмосфере O₂, *c* — после отжига в парах воды. $\nu = 9.4 \text{ GHz}, T = 300 \text{ K}.$

обработка кристаллов, как было показано ранее (см., например, [8]), очень эффективно влияет на механизм зарядовой компенсации примеси и поэтому позволяет с достаточной достоверностью проверять различные модели локальной структуры парамагнитных центров. Высокотемпературный отжиг кристаллов проводился при температуре 950–1000°C в течение 3–6 h с медленным нагревом и охлаждением образца (~ 10°C min). Спектры ЭПР регистрировались при температуре 295–300 К.

Отжиг кристаллов в атмосфере O2 в течение 5-6 h приводил к уменьшению интенсивности спектра ЭПР ромбического Fe³⁺ приблизительно в 2 раза, при этом появлялись сильный спектр Fe³⁺-V₀, который практически отсутствовал до отжига, и слабый спектр кубического Fe³⁺ в узле Ta⁵⁺ (рис. 1, *b*). Повторный отжиг кристалла в инертной атмосфере (Ar или He) восстанавливал исходный ромбический спектр. Еще более сильные изменения в спектрах ЭПР происходили после отжига кристаллов, содержащих ромбический Fe³⁺, в атмосфере паров воды. Уже после 2-3 h отжига ромбический спектр Fe³⁺ полностью исчезал и появлялись сильные спектры $Fe^{3+} - V_O$ и кубический Fe^{3+} в узле Ta^{5+} (рис. 1, с). Последующий отжиг кристалла в инертной атмосфере также восстанавливал исходный ромбический спектр. Перечисленные выше изменения в интенсивностях спектров ЭПР Fe³⁺ схематически представлены на рис. 3. Из этого рисунка, в частности, видно, что при всех проведенных нами обработках кристалла суммарная концентрация всех центров Fe³⁺ приблизительно сохранялась; следовательно, изменялся только механизм зарядовой компенсации железа в решетке. В связи с этим интересно отметить, что обработка кристалла в атмосфере водорода приводит к исчезновению всех спектров Fe³⁺. Такое поведение спектров при отжиге в водороде свидетельствует об изменении зарядового состояния самой примеси железа, а не его локального окружения.

Проанализируем, насколько предложенная ранее модель ромбического центра Fe^{3+} с положительно заряженным межузельным ионом-компенсатором соответствует приведенным выше экспериментальным данным. Очевидно, при таком механизме компенсации недостающего заряда Fe^{3+} для объяснения наблюдаемых изменений спектра при отжиге в атмосфере кислорода и H_2O мы должны предположить уход иона-компенсатора от парамагнитного иона и его последующее возвращение при отжиге в инертной атмосфере. Вероятность такого процесса может быть очень небольшой, поскольку в решетке KTaO₃ нет свободных каналов для перемеще-

Рис. 2. Температурная зависимость параметров спинового гамильтониана b_2^0 и b_2^2 ромбического центра Fe³⁺ в KTaO₃.

Рис. 3. Зависимость интенсивности спектров ЭПР Fe^{3+} в КТаO₃ от отжига в атмосферах O₂, Не и H₂O. *T* = 300 K.

ния межузельных ионов. Трудно также объяснить рост концентрации центров $Fe^{3+}-V_0$ при отжиге в H₂O, которые при отсутствии ромбических центров Fe^{3+} обычно сильно уменьшают свою концентрацию [8].

По нашему мнению, последовательная трансформация ромбического центра в аксиальный $Fe^{3+}-V_O$ и кубический Fe^{3+} (Ta⁵⁺) при отжиге в кислороде ясно указывает на его связь с вакансиями кислорода. Очевидно также, что ромбическая симметрия центра может быть обусловлена двумя вакансиями кислорода вблизи Fe^{3+} , как это схематически изображено на рис. 4. Такой центр $Fe^{3+}-2V_O$ является зарядово-нескомпенсированным в решетке кристалла, поэтому для образования такого дефекта в кристалле должны присутствовать некоторые примеси меньшей валентности, чем Ta⁵⁺ (например, Al^{3+} или Sn⁴⁺ и, возможно, вакансии K).

При отжиге в парах воды также меняется способ компенсации недостающего заряда Fe^{3+} . Как известно [9], такой отжиг сопровождается насыщением кристалла протонами, связанными с кислородом в молекулярные группы OH⁻, которые из-за своей высокой подвижности эффективно компенсируют недостающий положительный заряд в решетке. В результате этого вакансии кислорода становятся "лишними" и заполняются кислородом, который образуется при разложении воды на поверхности кристалла, приводя к трансформации ромбического центра $Fe^{3+} - 2V_0$ сначала в тетрагональный $Fe^{3+} - V_0$, а затем и в кубический Fe^{3+} .

При образовании двух вакансий кислорода вблизи ${\rm Fe}^{3+}$ оставшиеся четыре иона кислорода и сам ${\rm Fe}^{3+}$ смещаются из своих узельных положений к новым рав-

новесным положениям. Как показал дальнейший расчет, выполненный в рамках суперпозиционной модели Ньюмена, именно эта перестройка окружения Fe^{3+} и его смещение определяют симметрию и величину кристаллического поля. Модель Ньюмена была нами выбрана в силу ее простоты и хорошей "изученности" в применении к Fe^{3+} в октаэдрических структурах. Она с успехом применялась и раньше при изучении локальной структуры центров железа в SrTiO₃ [10], BaTiO₃ [11], PbTiO₃ [12] и других кристаллах.

Как известно, суперпозиционная модель Ньюмена основана на линейном суммировании вкладов от каждого из лигандов в величины b_n^m

$$b_n^m = \sum_i \bar{b}_n(R_i) K_n^m(\theta_i, \varphi_i), \qquad (2)$$

 $K_n^m(\theta_i, \varphi_i)$ — сферические функции полярных углов θ и φ . Например, для n = 2

$$K_2^0 = \frac{1}{2}(3\cos^2\theta - 1), \quad K_2^2 = \frac{3}{2}\sin^2\theta\cos 2\varphi.$$
 (3)

Модельная функция расстояния R парамагнитный ионлиганд $\bar{b}_n(R_i)$ обычно предполагается в виде показательной функции межатомного расстояния,

$$\bar{b}_2(R_i) = \bar{b}_2(R_0)(R_0/R_i)^{t_2},$$
 (4)

где показатель t_2 порядка восьми, R_0 — расстояние отсчета, которое обычно выбирается равным c/2 (c — постоянная решетки), $\bar{b}_2(R_0)$ — собственный параметр модели. Величины t_2 и $\bar{b}_2(R_0)$ для каждого типа лигандов и структуры решетки могут быть получены из эксперимента по влиянию аксиального давления на спектр ЭПР. Поскольку для КТаO₃ эти данные отсутствуют, мы рассчитали параметр $\bar{b}_2(R_0)$ точно так же, как и в работе [11] для ВаTiO₃, предполагая зависимость $\bar{b}_2(R_0)$

Рис. 4. Модель ромбического центра $Fe^{3+} - 2V_O$ в KTaO₃.

Рис. 5. Рассчитанные зависимости параметров кристаллического поля b_2^0 и b_2^2 для ромбического центра Fe³⁺ в KTaO₃ от величины нецентрального смещения Fe³⁺. Сплошные линии на графике соответствуют T = 4.2 К, штриховые — T = 300 К. Вертикальные отрезки показывают смещение Fe³⁺ для T = 4.2и 300 К.

от расстояния в виде (4) с параметрами, полученными для MgO [10],

$$\bar{b}_2(R_0) = \bar{b}_2(2.101\,\text{\AA}) \left[\frac{2.101(\text{\AA})}{R_0}\right]^8,$$
 (5)

где $\bar{b}_2(2.101 \text{ Å}) = -0.412(25) \text{ cm}^{-1}$, а $R_0 = c/2$ = 1.994 Å.

Применяя к ромбическому центру Fe³⁺-2V_O выражения (2)–(5) и учитывая его геометрию, изображенную на рис. 4, мы получили зависимости параметров спинового гамильтониана b_2^0 и b_2^2 от величины и направления смещения ионов кислорода и самого Fe³⁺. Некоторые из этих кривых, которые наиболее близко соответствуют экспериментальным значениям b_2^0 и b_2^2 , изображены на рис. 5. Как видно из этого рисунка, для объяснения экспериментальных величин b_2^0 и b_2^2 ион Fe³⁺ должен быть смещен из узла Та⁵⁺ в центре кислородного октаэдра внутрь квазитетраэдра, образованного четырьмя ионами кислорода, как это изображено на рис. 4. Величина смещения Δ при $T = 300 \,\mathrm{K}$ равна 0.25 Å. Ионы кислорода вблизи Fe³⁺ также меняют свои позиции. Два их них, лежащие на оси Y, смещаются навстречу друг другу на расстояние $d \approx 0.044$ Å, а остальные удаляются приблизительно на то же расстояние.

Наличие двух вакансий кислорода вблизи Fe^{3+} делает его положение нестабильным, что находит свое отражение в сильном температурном изменении параметров кристаллического поля (рис. 2). Эти температурные изменения $b_2^0(T)$ и $b_2^2(T)$ можно легко получить, введя температурную зависимость смещений Fe³⁺ и ионов кислорода. Как показал расчет, b_2^0 в первую очередь зависит от смещения ионов кислорода, расположенных на оси [001], в то время как b_2^2 определяется смещением как ионов кислорода, так и самого Fe³⁺ (рис. 5). С понижением температуры обе величины b_2^0 и b_2^2 увеличиваются, как и их отношение b_2^2/b_2^0 , чему соответствует увеличение величин Δ и d.

Полученная картина ионных смещений в ромбическом центре $Fe^{3+}-2V_O$ не совсем согласуется с чисто ионными кулоновскими взаимодействиями, поскольку ион Fe^{3+} в узле Ta^{5+} имеет эффективный отрицательный заряд и, следовательно, должен притягиваться к положительной V_O . По-видимому, подобный центр может быть конфигурационно стабильным только при наличии сильных ковалентных взаимодействий, и его электронную структуру корректнее анализировать в рамках более строгой оболочечной модели.

2. Обсуждение результатов

Аналогичный по симметрии ромбический центр Fe³⁺ существует и в SrTiO₃ [13], где, как предполагалось, он обусловлен межузельным ионом (предположительно Na⁺), расположенным в направлении [011]. Такая модель центра имеет ряд противоречий, основным из которых является то, что вносимые межузельным ионом искажения в кубическую решетку вблизи Fe³⁺ будут аксиальносимметричными вдоль оси [011]. Очевидно, для более низкой ромбической симметрии парамагнитного центра в кубической решетке необходимо наличие не одного, а двух дополнительных дефектов. В свете сказанного модель ромбического центра Fe³⁺ в SrTiO₃ требует уточнения.

Ромбический центр $Fe^{3+}-2V_O$ в КТаO₃ является протяженным дефектом, локально нарушающим инверсную симметрию в решетке и к тому же имеющим электрический дипольный момент. При низких температурах ($T < 40 \, \text{K}$) из-за высокой поляризуемости КТаO₃ локальные искажения, создаваемые этим дефектом, могут достигать размеров в несколько постоянных решетки, приводя к появлению слабого рассеяния Рамана первого порядка и генерации второй гармоники (ГВГ) света. В связи с этим обсудим некоторые результаты по ГВГ, полученные недавно на образцах КТаO₃, легированных Fe [4].

Авторами работы [14] было установлено, что легирование КТаО₃ примесью Fe в количестве до 5 000 ppm не приводит к заметному увеличению интенсивности ГВГ света, как это могло быть, и, таким образом, не подтверждает вклад центров Fe в низкотемпературные аномалии. По нашему мнению, такой результат мог получиться изза малой концентрации низкосимметричных (не кубических) центров Fe³⁺ в исследованных образцах, поскольку

примесь железа в КТаО3 создает целый ряд парамагнитных центров различной симметрии. Соотношение концентраций этих центров очень сильно зависит от степени легирования и технологии выращивания кристаллов. При этом, как правило, концентрация низкосимметричных центров железа (Fe³⁺ $-V_O$, Fe³⁺ $-O^{2-}$, Fe³⁺ $-2V_O$) невелика и составляет всего 100-200 at. ppm. Их количество определяется количеством дефектов-компенсаторов недостающего (избыточного) заряда Fe³⁺, в роли которых выступают вакансии кислорода и межузельный кислород. В кристаллах, выращенных с соблюдением всех необходимых технологических условий, количество таких дефектов должно быть небольшим. В результате этого общее количество центров, локально нарушающих кубическую симметрию при введении примеси железа, может не измениться по сравнению с их количеством в недопированном кристалле. Отжиг легированного железом КТаО₃ в атмосфере H₂, как уже отмечалось, приводит к понижению валентности Fe³⁺, поэтому в таких кристаллах при прочих равных условиях следует ожидать меньшего количества дефектов, образующихся на основе вакансий кислорода, и, следовательно, меньшей интенсивности ГВГ света, как это и имело место в эксперименте.

Ромбические центры Fe³⁺ привлекались также для объяснения диэлектрических потерь в КТаО3 при $T \approx 40 \,\mathrm{K} \,(\nu = 1 \,\mathrm{kHz})$ [3]. Частотная дисперсия диэлектрических потерь была описана законом Аррениуса с энергией активации $E_a \approx 0.078\,\mathrm{eV}$ и предэкспоненциальным множителем $au_0 \approx 10^{-13} \, {
m s}^{-1}$. Было отмечено увеличение пика диэлектрических потерь в кристаллах, содержащих ромбические центры Fe³⁺. Как уже отмечалось выше, эти центры действительно имеют электрический дипольный момент, который, однако, по крайней мере в интервале температур 4.2-300 К является статическим нереориентирующимся диполем, поскольку ни ширины линий ЭПР, ни симметрия спектра не изменяются при этих температурах. Ясно также, что реориентация дипольной примеси с $E_a = 0.078 \, \text{eV}$ и $au_0 = 10^{-13} \, {
m s}^{-1}$, которая имеет магнитный спиновый момент, привела бы к сильному уширению спектра ЭПР уже при $T \approx 100$ К. В общем случае для такой дипольной примеси следует ожидать совпадения величин E_a и τ_0 , определенных из дисперсии диэлектрических потерь и температурного или частотного изменения спектра ЭПР, как это имеет место, например, для Mn²⁺ в KTaO₃ [15] и КСІ [16].

Таким образом, ромбические центры ${\rm Fe}^{3+}$ не могут выступать источником диэлектрических потерь в KTaO₃ при $T \approx 40$ K, как это предполагалось ранее, и причина этих потерь остается все еще неустановленной.

Список литературы

- [1] W. Prusseit-Elffroth, F. Schwabl. Appl. Phys. A51, 361 (1990).
- [2] H. Uwe, K.B. Lyons, H.L. Carter, P.A. Fleury. Phys. Rev. B33, 6436 (1986).

- [3] B. Salce, J.L. Gravil, L.A. Boatner. J. Phys: Condens. Matter 6, 4077 (1994).
- [4] G. Wessel, H. Goldick. J. Appl. Phys. 39, 4855 (1968).
- [5] A.P. Pechenyi, M.D. Glinchuk, T.V. Antimirova, W. Kleemann. Phys. Stat. Sol. (b). **174**, 325 (1992).
- [6] A.P. Pechenyi, M.D. Clinchuk, C.B. Azzoni, F. Scardina, A. Paleari. Phys. Rev. B51, 12165 (1995).
- [7] H.-J. Reyher, B. Faust, M. Maiwald, H. Hesse. Appl. Phys. B63, 331 (1996).
- [8] В.В. Лагута, М.Д. Глинчук, А.А. Кармазин, И.П. Быков, П.П. Сырников. ФТТ 27, 7, 2211 (1985).
- [9] H. Engstrom, J.B. Bates, L.A. Boatner. J. Chem. Phys. **73**, 1073 (1980).
- [10] E. Siegel, K.A. Muller. Phys. Rev. **B19**, 109 (1979).
- [11] E. Siegel, K.A. Muller. Phys. Rev. **B20**, 3587 (1979).
- [12] V.V. Laguta, M.D. Glinchuk, I.P. Bykov, Yu.L. Maksimenko, J. Rosa, L. Jastrabik. Phys. Rev. B54, 12 353 (1996).
- [13] R.L. Berney, D.L. Cowan. Phys. Rev. B23, 37 (1981).
- [14] C. auf der Horst, S. Magnien, S. Kapphan. Ferroelectrics 185, 265 (1996).
- [15] A.S. Nowick, S.Q. Fu, W.K. Lee, B.S. Lim, T. Scherban. Mater. Sci. Eng. B23, 19 (1994).
- [16] G.D. Watkins. Phys. Rev. 113, 91 (1959).