Электрофизические свойства переключающих слоистых структур на основе пленочных фторидов редкоземельных элементов

© В.А. Рожков, М.Б. Шалимова

Самарский государственный университет, 443011 Самара, Россия

(Получена 2 февраля 1998 г. Принята к печати 8 апреля 1998 г.)

Представлены результаты исследования эффекта электрического переключения проводимости с памятью в слоистых структурах на основе пленочных фторидов РЗЭ. Методами вольт-амперных и вольтьемкостных измерений определены особенности высокоомного и низкоомного состояний структуры металл–диэлектрик– полупроводник. Показано, что характеристики низкоомного состояния рассматриваемой структуры описываются моделью структуры металл–туннельный диэлектрик–полупроводник.

Обнаруженный в последнее время эффект электрического переключения проводимости с памятью в структурах с тонкопленочными диэлектриками [1-3] открывает новые пути создания различного рода переключателей, элементов постоянной репрограммируемой памяти, управляющих и других функциональных устройств. Характерными для этого эффекта являются большая разница в сопротивлениях низкоомного и высокоомного состояний, практически неограниченное число циклов переключения при оптимальном выборе режима переключения, малые времена и энергии переключения. Хотя явлению переключения проводимости в большинстве пленочных материалов и структур на их основе присущи общие закономерности, однако до настоящего времени не удается указать однозначную причину их перехода из высокоомного состояния в низкоомное и обратно.

Аналогичный эффект электрического переключения проводимости с памятью проявляется в пленочных структурах на основе фторидов редкоземельных элементов (РЗЭ) [4-6]. Однако по таким своим параметрам, как кратность изменения сопротивления при переключении $(10^{6}-10^{7})$, время переключения (доли мкс), потребляемая энергия при переключении ($\sim 10^{-8}$ Дж), радиационная стойкость этой системы на несколько порядков превосходят известные аналоги. Это обусловливает необходимость исследования основных закономерностей эффекта переключения проводимости с памятью в структурах на основе фторидов РЗЭ, их зависимость от внутренних и внешних факторов, свойств высокоомного и низкоомного состояний. В связи с этим цель данной работы — изучение указанных здесь вопросов в структурах с пленками фторидов церия, диспрозия и эрбия.

Для экспериментальных исследований изготавливались образцы со структурой металл-диэлектрикполупроводник (МДП) и металл-диэлектрик-металл (МДМ). Диэлектрические пленки фторидов РЗЭ получались методом термического распыления порошкообразных CeF₃, DyF₃, ErF₃ в вакууме. Подложками для МДП структур служили пластины монокристаллического кремния *n*- или *p*-типа проводимости марки КЭФ-5 (111) или КДБ-4.5 (100) соответственно. Диэлектрические пленки фторидов РЗЭ изготавливались методом термического распыления порошкообразных фторидов в вакууме ~ $5 \cdot 10^{-4}$ Па из молибденовой лодочки при температуре подложки ~ 300°С на установке типа ВУП-5. Толщина пленки фторида РЗЭ составляла 0.2–0.5 мкм. При изготовлении МДМ структур на кремниевую или ситаловую подложку сначала напылялся толстый слой алюминия, затем на него наносились диэлектрический слой из фторида РЗЭ и контакты из алюминия.

Электроннографические исследования показали, что пленки фторида РЗЭ растут текстурированными с осью текстуры, расположенной перпендикулярно плоскости подложки. При этом структура пленок изменяется в зависимости от толщины напыляемого слоя. При напылении в вакууме на нагретую подложку сначала получается аморфный слой фторида РЗЭ, затем поликристаллический с произвольной ориентацией кристаллитов. Последующие слои являются текстурированными, но появление преимущественной ориентации не влияет на структуру нижних слоев, что свидетельствует о текстуре роста получаемых пленок.

На рис. 1 представлены типичные вольт-амперные характеристики (ВАХ) переключения для исследованных МДП структур, изготовленных на кремниевых подложках п-типа проводимости. Как показали исследования, МДП структуры могут находиться в двух устойчивых состояниях с существенно различными значениями сопротивления и ВАХ. Изготовленные образцы находятся в состоянии с высоким сопротивлением $(2 \div 4) \cdot 10^{11}$ Ом (рис. 1, ветвь АОВ), пока электрическое напряжение, полярность которого соответствует обеднению поверхности полупроводника основными носителями заряда, не превысит некоторое пороговое значение $V_t = 5 \div 200$ В. При превышении порогового напряжения происходит резкое уменьшение сопротивления образца и переключение его в низкоомное состояние с сопротивлением $10^4 \div 10^5$ Ом (рис. 1, ветвь *COD*). Переключение структур в исходное, высокоомное состояние осуществляется при противоположной полярности напряжения, когда величина тока через образец достигает значения 100 ÷ 600 мкА. При этом напряжение обратного

Рис. 1. ВАХ кремниевой МДП структуры с фторидом РЗЭ. *АОВ* — высоокомное состояние; *СОD* — низкоомное состояние.

переключения для различных образцов лежит в пределах $V_0 = 3 \div 20$ В.

Структуры воспроизводимо и многократно (более 10⁴ раз) переключаются из одного состояния в другое и обратно как на постоянном, так и импульсном напряжении, причем оба состояния сохраняются длительное время (более 30 суток) при комнатной температуре и выключенном напряжении.

МДМ структуры также обладали свойством переключения и в исходном состоянии имели высокое сопротивление $\sim 10^7$ Ом. Сопротивление структур в низкоомном состоянии составляло единицы Ом. Переключение МДМ структур из высокоомного состояния в низкоомное и обратно не зависело от полярности приложенного напряжения, а отличалось лишь величинами тока и напряжения прямого и обратного переключения.

Исследования показали, что величина тока, протекающего через МДП структуру в диэлектрическом состоянии, составляет ~ $10^{-11} \div 10^{-12}$ А при напряжении 1 В. В данном случае ВАХ практически не зависели от полярности приложенного напряжения и хорошо спрямлялись в координатах $\ln J - \sqrt{V}$, характерных для механизма Пула–Френкеля. Типичные ВАХ МДП структуры с пленкой фторида эрбия в высокоомном состоянии представлены на рис. 2 и для обеих полярностей удовлетворительно описываются соотношением

$$J = \exp(\alpha \sqrt{V}),\tag{1}$$

где $\alpha = 2.5 \div 3.5$.

Установлено, что в диэлектрическом состоянии ток через структуру экспоненциально возрастает с ростом температуры. Температурная зависимость тока в этом случае характеризуется энергией активации $\sim 0.5 \div 0.8$ эВ для различных фторидов в области температур 300 ÷ 480 К. Указанная зависимость для МДП структуры с фторидом церия представлена на рис. 3 кривой *1*.

В низкоомном состоянии ВАХ МДП структур имеют униполярный вид с коэффициентом выпрямления $10 \div 10^4$. На рис. 4 кривая *1* иллюстрирует ВАХ, характеризующуюся малым коэффициентом выпрямления и большим обратным током. В другом случае, представленном на рис. 4 (кривая 2), характеристика аналогична ВАХ диода Шоттки с коэффициентом выпрямлени ~ 10^4 . В последнем случае с увеличением напряжения обратный ток выходит на насыщение (область *a*), а при достаточно большом приложенном электрическом напряжении ток через структуру резко возрастает (область *b*). Область резкого увеличения обратного тока

Рис. 2. Вольт-амперная характеристика МДП структуры Al-ErF₃-Si в высокомном состоянии. 1 - V > 0; 2 - V < 0.

Рис. 3. Температурная зависимость тока структуры $Al-CeF_3-Si$ в высокоомном (1) и низкоомном (2) состоянии.

Физика и техника полупроводников, 1998, том 32, № 11

Рис. 4. ВАХ структуры Al–CeF₃–*n*-Si в низкоомном состоянии.

определяется лавинным умножением свободных носителей заряда в кремнии с положительным температурным коэффициентом напряжения пробоя. Для обеих структур с указанными ВАХ в низкоомном состоянии прямой ток слабо зависит от температуры, а температурная энергия активации проводимости составляет 0.03 ÷ 0.1 эВ при прямом смещении ~ 1 В (рис. 3, кривая 2).

Исследованием электрических свойств МДМ структур с фторидами РЗЭ в низкоомном состоянии было установлено, что канал проводимости, формирующийся в пленке фторида РЗЭ в низкоомном состоянии, имеет положительный температурный коэффициент сопротивления, а также низкое удельное сопротивление, характерное для металлов. Это дает основание предположить, что проводящий канал в основном состоит из металлической фазы. Оценки радиуса канала проводимости по величине сопротивления растекания кремниевой подложки показали, что типичные значения в рассматриваемом случае лежат в пределах 1–5 мкм.

Установлено, что на электрофизические характеристики МДП структур в низкоомном состоянии определяющее влияние оказывает присутствие слоя ультратонкого диэлектрика на границе полупроводника с металлическим каналом проводимости. Как показал анализ экспериментальных ВАХ исследуемых МДП структур с фторидами РЗЭ, величина тока, протекающего через структуры в низкоомном состоянии, определялась толщиной *d* слоя ультратонкого диэлектрика и значением поверхностного потенциала φ_S^0 на кремниевой подложке. В случае, когда оценочная толщина слоя ультратонкого диэлектрика после переключения в проводящее состояние была порядка 10 Å, экспериментальные обратные ветви ВАХ описывались экспоненциальной зависимостью и представляли область насыщения тока. Исследования показали, что на прямых ветвях ВАХ выделяются три характерные области при начальном изгибе зон φ_S^0 , соответствующем обеднению поверхности полупроводника основными носителями заряда.

Первая область соответствует ограничению тока через структуру полупроводником, когда напряжение, подаваемое на структуру $V < \varphi_S^0$. При этом ток через структуру определяется процессами надбарьерной эмиссии основных носителей из полупроводника в металл с экспоненциальной зависимостью тока от приложенного напряжения

$$J \sim \exp\left(\frac{qV}{nkT}\right),\tag{2}$$

где *q* — заряд электрона; *k* — постоянная Больцмана; *T* — абсолютная температура; *n* — коэффициент неидеальности.

Вторая область обусловлена ограничением тока туннельной проводимостью диэлектрика в области напряжений $\varphi_S^0 < V < 1.2$ В. При этом зоны спрямляются и на диэлектрике падает напряжение $V - \varphi_S^0$. В этой области ВАХ определяются доминирующим прямым туннелированием основных носителей заряда из полупроводника в металл и описываются зависимостью

$$J \approx B(V - \varphi_S^0)^2, \tag{3}$$

где В — постоянная (рис. 5).

В третьей области при V ≥ 2 В прямой ток в основном ограничивается сопротивлением растекания кремниевой подложки.

Как показали исследования, вольтьемкостные характеристики исследуемых структур в высокоомном состоянии соответствуют типичным высокочастотным вольтфарадным зависимостям МДП структур с характерным насыщением емкости в области аккумуляции и инверсии

Рис. 5. Аппроксимация квадратичной зависимостью ВАХ структуры Al–CeF₃–Si в низкоомном состоянии при прямом смещении $V > \varphi_s^0$. φ_s^0 , эB: 1 - 0.5, 2 - 0.43, 3 - 0.38, 4 - 0.17.

Рис. 6. Вольтьемкостные характеристики структуры Al-DyF₃-Si. *I* — подложка Si *p*-типа; *2* — подложка Si *n*-типа; частота измерения *f* = 1 МГц.

на поверхности полупроводника и проявляют гистерезисные явления (рис. 6). Для структур на основе *p*-кремния гистерезис обусловлен дрейфом ионов в диэлектрике, а для образцов с кремниевой подложкой *n*-типа проводимости — захватом носителей заряда на поверхностные состояния границы раздела полупроводник-диэлектрик. МДП структуры на основе кремния *p*-типа имеют положительный заряд в диэлектрике, а для *n*-типа этот заряд отрицательный. Эффективная плотность поверхностных состояний, рассчитанная из вольтьемкостных характеристик при напряжении плоских зон, составляет $2.8 \cdot 10^{10}$ см⁻² и $2.6 \cdot 10^{11}$ см⁻² для структур на основе DyF₃ с кремнием *n*- и *p*-типа соотвественно.

После переключения МДП структуры в низкоомное состояние ее вольтьемкостные характеристики изменяются. Значения емкости диэлектрика, определенные как емкость структуры в области положительных напряжений, соответствующих аккумуляции заряда на поверхности полупроводника, в высокоомном состоянии оказываются меньше, чем в низкоомном состоянии, величина разности не превышает 15 пФ.

Выражение для емкости МДП структуры в режиме аккумуляции в высокоомном состоянии имеет следующий вид:

$$C_{BC} = \frac{\varepsilon_0 \varepsilon_i S}{d_0},\tag{4}$$

где ε_i — диэлектрическая проницаемость фторида ПЗЭ; ε_0 — диэлектрическая проницаемость вакуума; *S* — площадь контакта; d_0 — толщина подконтактного диэлектрика.

В низкоомном состоянии параллельно с емкостью C_{BC} включается емкость C_i — емкость туннельно-тонкого слоя диэлектрика, расположенного в области канала проводимости с площадью A_f . Тогда емкость структуры в низкоомном состоянии, учитывая, что $(S - A_f) \cong S$, можно записать в виде

$$C_{HC} = \frac{\varepsilon_0 \varepsilon_i (S - A_f)}{d_0} + \frac{\varepsilon_0 \varepsilon_i^* A_f}{d} \approx C_{BC} + C_i, \qquad (5)$$

где ε_i^* — диэлектрическая проницаемость слоя ультратонкого диэлектрика. Полагая значение $C_i = 1 \div 15 \,\mathrm{n}\Phi$, можно оценить толщину слоя туннельно-тонкого диэлектрика *d*:

$$C_i = C_{HC} - C_{BC} = \frac{\varepsilon_0 \varepsilon_i^* A_f}{d}.$$
 (6)

Принимая $\varepsilon_i^* = 4$, при r = 3 мкм, $A_f = \pi \cdot r^2 = 2.83 \cdot 10^{-11} \,\mathrm{m}^2$, получим $d = 7 \cdot 10^{-11} - 10^{-9} \,\mathrm{m} = 0.7 \div 10 \,\mathrm{\AA}$, а при r = 5 мкм, $A_f = \pi \cdot r^2 = 7.85 \cdot 10^{-11} \,\mathrm{m}^2$ получим $d = 2 \cdot 10^{-10} \div 2.8 \cdot 10^{-9} \,\mathrm{m} = 2 \div 28 \,\mathrm{\AA}$. Полученные значения d находятся в согласии со значениями, приемлемыми для МДП структур с туннельнотонким диэлектрической проницаемости SiO₂. Учитывая, что диэлектрическая проницаемость ε_i^* туннельно-тонкого слоя принималась равной диэлектрическая проницаемость фторидов РЗЭ $\sim 8 \div 15$, подстановка данного значения в формулу (6) позволит получить большие толщины диэлектрика.

На рис. 7 представлены полученные нами экспериментальные зависимости квадрата обратной величины удельной емкости от напряжения для МДП структур на основе фторидов РЗЭ в низкоомном состоянии на примере структуры Al–Si–CeF₃. Из рисунка видно, что при достаточно больших обратных смещениях имеет место прямо пропорциональная зависимость $1/C^2$ от V, характерная для p-n-переходов или барьеров Шоттки, а при V > -2 В наблюдается отклонение характеристики $C^2 - V$ от прямой.

При объяснении представленных кривых прежде всего необходимо учитывать степень электрической связи между металлом и полупроводником, которая определяется толщиной диэлектрика. Литературные данные [7] свидетельствуют, что для тесных барьеров Шоттки высокочастотная зависимость C^{-2} от V хорошо аппроксимируется

Рис. 7. Экспериментальные зависимости $(S/C)^2$ от напряжения для структуры Al–CeF₃–Si. 1 - n-Si–CeF₃; 2 - p-Si–CeF₃; S - площадь контакта; f = 1 Мгц.

Физика и техника полупроводников, 1998, том 32, № 11

прямой при всех обедняющих значениях напряжения, так как в данном случае зависимость емкости от смещения в режиме неравновесного обеднения определяется ростом толщины области пространственного заряда с напряжением на затворе. При этом поверхностные состояния находятся в равновесии с металлом, и при изменении напряжения смещения заполнение поверхностных ловушек не изменяется. Однако для структур с туннельно-тонким диэлектриком аппроксимация неравновесного обеднения не справедлива, если на поверхности полупроводника создается слой частичной инверсии [7]. В этом случае поверхностные состояния находятся в равновесии с полупроводником, а наклон зависимости C^{-2} от Vопределяется выражением [7]

$$\frac{dC^{-2}}{dV} = \frac{2}{q\varepsilon_s N} \left(1 \pm \frac{q^2 N_T}{C_i} \frac{dF_T}{d\varphi_s} \right)^{-1},\tag{7}$$

где N — концентрация доноров или акцепторов; N_T — концентрация дырочных или электронных ловушек на поверхности полупроводник–диэлектрик; F_T — их относительная заполненность при напряжении V; C_i — емкость диэлектрика; φ_S — поверхностный изгиб зон.

Для диодов Шоттки в случае, когда заполненность граничных состояний определяется полностью уровнем Ферми в металле, выполняется условие $dF_T/d\varphi_S = 0$, при этом из (7) можно найти концентрацию примеси *N*. И наоборот, по известному *N* можно определить значение диффузионного потенциала V_{D0} . Для структур металл–туннельно-тонкий диэлектрик–полупроводник (МТДП) в случае, когда заполненность граничных состояний определяется уровнем Ферми в полупроводнике, наклон пропорционален (N^*)⁻¹, где

$$N^* = N\left(1 \pm \frac{q^2 N_T}{C_i} \frac{dF_T}{d\varphi_S}\right).$$
 (8)

В этом случае точка пересечения характеристики $C^{-2}-V$ с осью напряжений не дает значения диффузионного потенциала V_{D0} .

Таким образом, униполярность ВАХ МДП структур с фторидами РЗЭ в низкоомном состоянии следует отнести не к свойствам самого канала, а к контакту проводящий канал-полупроводник. Проведенные нами исследования показали, что от подложки проводящий канал в пленке фторида РЗЭ отделяется туннельно-тонким диэлектрическим слоем, который определяет электрофизические характеристики МДП структур в низкоомном состоянии. Анализ экспериментальных результатов показывает, что толщина слоя туннельного диэлектрика в МДП структурах с фторидами РЗЭ в низкоомном состоянии составляет $10 \div 40$ Å. При этом структуры с более тонким диэлектриком ~ $10 \div 20$ Å имеют характеристики, аналогичные получаемым для тесных барьеров Шоттки или p-n-переходов.

Список литературы

- [1] S.R. Ovshinsky. Phys. Rev. Lett., 21, 1450 (1968).
- [2] J.R. Bosnell, C.B. Thomas. Sol. St. Electron., 15, 665 (1972).
- [3] G.S. Nadkarni, V.S. Shirodrar. Thin Sol. Films, **105**, 115 (1983).
- [4] В.А. Рожков, М.Б. Шалимова. Письма ЖТФ, **18**, 74 (1992).
- [5] В.А. Рожков, М.Б. Шалимова. ФТП, 27, 438 (1993).
- [6] В.А. Рожков, Н.Н. Романенко. Письма ЖТФ, 19, 6 (1993).
- [7] Vassilliki Bredimas. J. Appl. Phys., 75, 7922 (1994).

Редактор В.В. Чалдышев

Electrophysical characteristics of rare-earth fluoride film-based switching silicon flaky structures

V.A. Rozhkov, M.B. Shalimova

State University, 443011 Samara, Russia

Abstract Results are presented of investigation of the conduction electrical switching effect with memory in rare earth fluoride–based flaky structures. Features of high- and low-resistance states of the metal–dielectric–semiconductor structure have been found. It is shown that low-resistance state characteristics of this structure are described with a metal–tunnel dielectric–semiconductor structure model.