Перенос заряда и диэлектрические свойства гранулированных нанокомпозитов Co_x (LiNbO₃)_{100-x}

© С.А. Гриднев, А.Г. Горшков, А.В. Ситников, Ю.Е. Калинин

Воронежский государственный технический университет, 394026 Воронеж, Россия

E-mail: goras@box.vsi.ru

Изучены электрические и диэлектрические свойства тонкопленочных наногетерогенных структур $Co_x(LiNbO_3)_{100-x}$ в широком диапазоне концентраций металлической фазы при комнатной температуре. Найден порог перколяции, характерный для гранулированных систем "металл–диэлектрик". В области малых концентраций металлической фазы зависимость диэлектрической проницаемости от концентрации описывается формулой Бруггемана. Установлена смена механизмов проводимости в области низких температур.

Работа выполнена при финансовой поддержке РФФИ (грант № 04-02-16418).

PACS: 77.22.-d, 77.22.Ch, 77.55.+f, 77.84.Dy

Цель работы — исследование зависимости диэлектрической проницаемости от концентрации металлической фазы и механизмов проводимости тонкопленочных нанокомпозитов $Co_x(LiNbO_3)_{100-x}$ в широком диапазоне температур.

Образцы $Co_x(LiNbO_3)_{100-x}$ были получены методом ионно-лучевого распыления мишеней в смешанной атмосфере (аргон + кислород) [1] и представляли собой пленки толщиной $2-6\,\mu$ m.

Для измерения электропроводности (σ) и диэлектрической проницаемости (ε) гетерогенных наноструктур на переменном токе использовался емкостной мост. Концентрационная зависимость электропроводности изучалась на постоянном токе.

Зависимости ε и σ от концентрации Со в композитах $Co_x(LiNbO_3)_{100-x}$ при комнатной температуре представлены на рис. 1. Полученная в концентрационной области 10-64 at.% Со зависимость $\sigma(x)$ характерна для гранулированных систем с перколяционным порогом. Порогу перколяции соответствует интервал составов вблизи $x \approx 47$ at.%, в котором величина проводимости резко изменяется на один-два порядка.

До порога перколяции структура нанокомпозитов $Co_x(LiNbO_3)_{100-x}$ представляет собой электрически изолированные друг от друга гранулы Со, разделенные прослойками LiNbO₃. Поэтому в таком режиме электроперенос через материал определяется проводимостью диэлектрика. Этот диэлектрический режим характеризуется низкими значениями ε и σ , которые монотонно возрастают при увеличении x (рис. 1).

Концентрационную зависимость диэлектрической проницаемости композита ε^* при малых *х* можно описать с помощью формулы Бруггемана (штриховая линия на рис. 1)

$$\varepsilon^* = \varepsilon_1 / (1 - y)^3, \tag{1}$$

где ε_1 — диэлектрическая проницаемость материала матрицы, *у* — объемная концентрация включений Со [2].

При содержании металла, превышающем порог перколяции 47 at.%, перенос заряда осуществляется по аморфной металлической фазе, образующей непрерывную сетку включений в диэлектрической матрице. Повышение температуры от комнатной и выше приводит к увеличению σ в результате структурной релаксации и последующей кристаллизации неупорядоченной структуры, что характерно для аморфных металлических сплавов [1].

Для определения механизмов электрической проводимости в нанокомпозитах $Co_x(LiNbO_3)_{100-x}$ при x ниже порога перколяции были измерены температурные зависимости σ на частоте 10 kHz в интервале температур 90-290 К. Экспериментальные данные построены в координатах $\ln(\sigma/\sigma_0) \sim (1/T)^{1/4}$ и $\ln(\sigma/\sigma_0) \sim (1/T)^{1/2}$, где σ_0 — проводимость при температуре 284 К. Легко убедиться, что на зависимости $\sigma(T)$, построенной в полулогарифмическом масштабе, можно выделить две температурные области, в которых экспериментальные точки достаточно хорошо ложаться на прямые линии (рис. 2). При температуре 190К происходит смена механизма проводимости, причем в области температур 90-190 К проводимость подчиняется "закону 1/4", а в интервале температур 190-293 К — "закону 1/2", как показано на рис. 2.

Рис. 1. Зависимость электрической проводимости σ и диэлектрической проницаемости ε композитов $Co_x(LiNbO_3)_{100-x}$ от атомной доли *x* металла при комнатной температуре.

Справедливость закона Мотта [3] в интервале температур 90–190 К свидетельствует о том, что в исследуемых композитах доминирует перенос заряда путем прыжковой проводимости электронов с переменной длиной прыжка по локализованным состояниям, лежащим в узкой полосе энергий вблизи уровня Ферми, а выражение для проводимости имеет следующий вид [3,4]:

$$\sigma = e^2 R^2 \nu_{\rm ph} g \, \exp\left(-\frac{B}{T}\right)^{1/4},\tag{2}$$

где

$$B = \frac{1.66}{a^3 kg(E_F)},\tag{3}$$

е — заряд электрона, R — длина прыжка, $\nu_{\rm ph}$ — фактор спектра фононов взаимодействия, T — абсолютная температура, $g(E_F)$ — плотность состояний на уровне Ферми, a — радиус локализации волновой функции электрона, k — постоянная Больцмана.

Рис. 2. Температурные зависимости электропроводности в координатах $\ln(\sigma/\sigma_0)$ от $(1/T)^{1/4}$ (*a*) и $\ln(\sigma/\sigma_0)$ от $(1/T)^{1/2}$ (*b*) для композитов $\operatorname{Co}_x(\operatorname{LiNbO}_3)_{100-x}$ в интервалах температур 80–190 К (*a*) и 190–290 К (*b*) при различной концентрации металлической фазы *x*, at.%: *I* — 15, *2* — 28, *3* — 43.

Зависимость длины прыжков от состава композита

<i>x</i> , at.%	<i>B</i> ,K	$g(E_F)$, $eV^{-1}cm^{-3}$	R, nm $(T = 100 K)$
15	21.437 ⁴	$\begin{array}{c} 1.78 \cdot 10^{20} \\ 3.516 \cdot 10^{20} \\ 2.137 \cdot 10^{21} \end{array}$	2.034
28	18.082 ⁴		1.715
43	11.517 ⁴		1.092

Из рис. 2, *а* были определены значения величин *В* (см. таблицу) для трех составов композитов, которые уменьшаются по мере увеличения концентрации металла. Зная *В* и принимая радиус локализации $a \approx 0.8$ nm, получаем плотность состояний на уровне Ферми, изменяющуюся от $g(E_F) \approx 1.78 \cdot 10^{20} \, {\rm eV^{-1} cm^{-3}}$ до $g(E_F) \approx 2.137 \cdot 10^{21} \, {\rm eV^{-1} cm^{-3}}$ для разных составов композитов.

Полученная оценка плотности состояний очень высока вследствие того, что источниками локализованных состояний могут быть не только дефекты структуры диэлектрической матрицы, но и граница раздела матрица– гранула. Длина прыжков носителей заряда *R* при температуре 100 К была оценена по формуле

$$R(T) = \frac{3}{8} a B^{1/4} T^{-1/4}.$$
 (4)

Из таблицы видно, что *R* с повышением концентрации *x* снижается. Такая тенденция коррелирует с уменьшением расстояния между гранулами. В более высокотемпературном интервале, где выполняется закон $\ln(\sigma/\sigma_0) \sim (1/T)^{1/2}$, энергия фононов начинает оказывать доминирующее влияние на перенос заряда. Поэтому для описания температурных зависимостей электрической проводимости в указанном температурном интервале была использована модель неупругого резонансного туннелирования, когда перенос осуществляется по конечному числу каналов со средним значением локализованных состояний [4]. Согласно этой модели, температурная зависимость проводимости в канале σ_n , содержащем *n* локализованных состояний, имеет степенной вид

$$\sigma_n = P\left(\frac{\Lambda^2}{dc^5}\right)^{(n-1)/(n+1)} \frac{(ga^2n^2l)^n T^{\gamma_n} E^{\beta_n}}{al} \exp\left[\frac{-2l}{a(n+1)}\right],$$
(5)

где a — радиус локализованного состояния; l — среднее расстояние между гранулами; $\gamma_n = n - 2/(n+1)$, $\beta_n = 2n/(n+1)$; P — коэффициент; Λ — константа деформационного потенциала; d — плотность вещества матрицы; c — скорость звука; g — плотность локализованных состояний; E — глубина залегания локализованного состояния.

Из анализа зависимости $\sigma(T)$ в интервале температур 190–290 К определена величина показателя степени γ и рассчитано среднее число локализованных состояний $\langle n \rangle$ в туннельных каналах между изолированными про-

Рис. 3. Зависимость среднего числа локализованных состояний от концентрации металлического компонента для композитов $Co_x(LiNbO_3)_{100-x}$.

водящими кластерами гранул по формуле

$$\langle n \rangle = \frac{1}{2} \left[\gamma - 1 + (\gamma^2 + 2\gamma + 9)^{1/2} \right].$$
 (6)

Результаты расчета показали, что с увеличением доли металла в составе композита среднее число локализованных состояний между гранулами уменьшается (рис. 3).

Плотность локализованных состояний g оценивалась по формуле

$$\ln(T^* - gal^2) \approx -\left(\frac{l}{a}\right)^{1/3},\tag{7}$$

где $a \approx 0.8$ nm, $l \approx 2$ nm, $T^* \approx 190$ K (температура смены механизма проводимости). Она оказалась равной $g \approx 4.464 \cdot 10^{17} \,\mathrm{eV}^{-1} \mathrm{cm}^{-3}.$

Известно, что проводимость в переменном электрическом поле при прыжковом механизме зависит от частоты ω по следующему закону [5]:

$$\sigma(\omega) \sim \omega \left[\ln \left(\frac{\omega_{\rm ph}}{\omega} \right) \right]^4,$$
 (8)

где $\omega_{\rm ph}$ — частота фононов. При $\omega_{\rm ph} \approx 10^{12}\,{\rm s}^{-1}$ должна наблюдаться частотная зависимость σ , подчиняющаяся степенному закону, т.е. $\sigma \sim \omega^n$. Поэтому для подтверждения прыжкового механизма проводимости в излучаемых образцах были проведены измерения частотных зависимостей σ при комнатной температуре для состава Co₂₈(LiNbO₃)₇₂. Оценка показателя *n* из экспериментальной кривой $\sigma(\omega)$, измеренной при комнатной температуре и построенной в двойном логарифмическом масштабе, дала значение n = 0.6, характерное для прыжкового механизма проводимости. Поэтому можно утверждать, что в исследованных образцах в условиях слабых электрических полей реализуется прыжковый механизм проводимости.

Список литературы

- [1] Yu.E. Kalinin, M.N. Kopitin, S.A. Samsonov, A.V. Sitnikov, O.V. Stognei. Ferroelectrics 307, 243 (2004).
- [2] Б.М. Тареев. Физика диэлектрических материалов. Энергия, М. (1973). 328 с.
- [3] Н. Мотт, Э. Девис. Электронные процессы в некристаллических веществах. Мир, М. (1974). 472 с.
- [4] Ю.Е. Калинин, А.Н. Ремизов, А.В. Ситников. ФТТ 46, 11, 2076 (2004).
- [5] Б.И. Шкловский. ФТП 6, 12, 2335 (1972).