Зонно-энергетическая структура и рефрактивные свойства кристаллов LiRbSO₄

© О.В. Бовгира, В.И. Стадник, О.З. Чиж

Львовский национальный университет им. И. Франко, 79005 Львов, Украина

E-mail: vasylstadnyk@ukr.net

(Поступила в Редакцию 21 апреля 2005 г. В окончательной редакции 22 сентября 2005 г.)

> Изучена зонно-энергетическая структура механически свободных и зажатых монокристаллов LiRbSO₄. Установлено, что вершина валентной зоны локализована в точке D ($\mathbf{k} = (0.5, 0.5, 0)$), дно зоны проводимости находится в точке Γ , а ширина наименьшей прямой запрещенной щели $E_g = 5.20$ eV. Дно зоны проводимости сформировано в основном *s*, *p*-состояниями Li и Rb, гибридизированными с антисвязующими *p*-состояниями S и O. Определены барические коэффициенты изменения энергетического положения состояний валентной зоны, зоны проводимости и E_g . Проанализированы барические изменения показателей преломления n_i .

PACS: 71.20.Ps, 78.20.Ci

1. Введение

Кристаллы LiRbSO₄ имеют псевдогексагональную кристаллическую структуру, похожую на структуру NH₄LiSO₄ [1]. Они обладают необычной последовательностью фазовых переходов (ФП): параэлектрическая фаза I (симметрия *Pcmn*, $T_i = 477 \text{ K}) \rightarrow$ несоразмерная фаза II ($k_z = (2 - \delta)/5$, $T_{c1} = 475 \text{ K}$) \rightarrow сегнетоэластическая фаза III ($P12_1/c1$, $T_3 = 458 \text{ K}$) \rightarrow сегнетоэлектрическая фаза IV (P11n, $T_4 = 439 \text{ K}$) \rightarrow параэлектрическая фаза V ($P112_1/n$) [2–5].

Изучение $\Phi\Pi$ методами оптической спектроскопии и люминесценции, анализ и интерпретация спектров невозможны без четкого представления о зонной структуре кристаллов. На момент выполнения работы расчеты структуры энергетических зон кристаллов LiRbSO₄ отсутствовали. Интенсивные экспериментальные исследования этих кристаллов не позволили получить совокупность данных, с помощью которых можно было бы дополнить параметризационную процедуру в традиционном эмпирическом расчете. Поэтому получить сведения о зонно-энергетическом спектре и механизме переходов в монокристаллах LiRbSO₄ можно только путем расчета из первых принципов.

В настоящей работе представлены результаты измерений показателей преломления n_i и теоретических *ab initio* расчетов структуры энергетических зон и мнимой части ε_2 комплексной диэлектрической константы механически свободных и зажатых монокристаллов LiRbSO₄ в параэлектрической моноклинной фазе, а также сделана попытка связать обнаруженные изменения структуры энергетических зон с барическими изменениями n_i .

Для определения зонной структуры кристаллов LiRbSO₄ из первых принципов использован метод нелокального нормосохраняющего псевдопотенциала. Методика расчетов детально описана в работах [6,7]. Детали теории и главные приближения, использованные при расчете, можно обобщить следующим образом.

1) Полная электронная энергия кристаллов рассчитывалась самосогласованно в приближении функционала локальной плотности с использованием базиса плоских волн.

2) Электронные энергии и плотности определены из уравнений Кона-Шема.

3) Для ионных потенциалов использованы нормосохраняющие псевдопотенциалы Бачелета—Хаманна—Шлютера [8]. Для корреляционного потенциала использованы формула Кеперли—Алдера при $r_s > 1$ $(r_s = (3/4\pi\rho)^{1/3})$ и выражение Гелл—Мана—Бракнера для границы высокой плотности. Распределение зарядовой плотности рассчитывали методом специальных точек [9,10] методом демпфирования заряда.

4) Для каждой кристаллической структуры проводилась релаксация позиций ионов на основе рассчитанных атомных сил и определялось интегральное напряжение ячейки. Сходимость релаксационной процедуры считалась достигнутой, когда величины сил, которые действуют на атомы, становились меньшими 0.05 eV/Å, а объемное напряжение было меньше 0.1 GPa.

Расчеты выполнены на базисе 9196 плоских волн (граничная кинетическая энергия $E_{\rm cut} = 1/2G_{\rm max}^2 = 450 \,{\rm eV}$). Для определения самосогласованного потенциала было сделано двенадцать итерационных циклов.

Барические зависимости показателей преломления $n_i(\lambda, \sigma)$ изучались исходя из исследований влияния одноосного давления на температурные и спектральные изменения двупреломления с использованием формулы

$$n_i(\lambda, T) = n_{i0}(\lambda, T) - 1/2\pi_{im}(\lambda, T)\sigma_m n_{i0}^3(\lambda, T), \quad (1)$$

где λ — длина волны света, d — толщина кристалла в направлении просвечивания, n_{i0} — показатели преломления механически свободного кристалла, π_{im} — абсолютные пьезоконстанты.

На рис. 1 представлена рассчитанная зонно-энергетическая диаграмма вдоль высокосимметричных линий зоны Бриллюэна. В целом две зоны, которые создают запрещенный промежуток, характеризуются относительно слабой дисперсией в *k*-пространстве. Исключением являются линии в центре зоны Бриллюэна — вблизи точки Г.

Вершина валентной зоны, которой мы приписываем энергетическую отметку 0 eV локализована в точке D ($\mathbf{k} = (0.5, 0.5, 0)$). Дно зоны проводимости находится в точке Γ (E = 5.16 eV). Ширина наименьшей прямой запрещенной щели (точка Γ) составляет 5.20 eV, однако нужно иметь в виду занижение величины энергетической щели, которое характерно для расчетов в рамках формализма локальной плотности.

Валентный комплекс монокристаллов LiRbSO₄ состоит из отдельных узких связок зон, разделенных запрещенными промежутками. Область плотности состояний возле отметки -41 eV по шкале энергий связи формируется связанными 2*s*-состояниями Li. Валентные зоны между энергиями -22.5 и -24.5 eV образованы в основном состояниями 5*s*-Rb и 2*p*-O с подмешиванием состояний 2*p*-S. Зоны состояний 2*p*-O разделены на три широкие подзоны: -(1.5-3.5) eV, -(5-8) eV,-(18-19) eV. К другой области существенно подмешаны состояния 2*p*-S. Основной вклад в плотностьсостояний в области <math>-8.5 eV приходится на *p*-орбитали Rb.

На рис. 2 представлены спектральные зависимости полной и парциальной плотностей состояний основных атомов с соответствующими орбитальными моментами. Вершина валентной зоны образована связывающими *p*-обриталями серы. Дно зоны проводимости сформи-

Рис. 1. Зонно-энергетическая диаграмма монокристаллов LiRbSO₄.

Рис. 2. Полная плотность состояний и энергетическая зависимость парциальных плотностей электронных состояний монокристалла LiRbSO₄.

ровано в основном *s*, *p*-состояниями Li и Rb, гибридизированными с антисвязывающими *p*-состояниями S и O. Другими словами, фундаментальное оптическое поглощение обусловлено в основном внутрианионными переходами.

Анализ связи межзонных переходов с их оптическим откликом лучше всего проводить путем рассмотрения спектральных зависимостей мнимой части диэлектрической проницаемости ε_2 , хотя часто идентификацию оптических спектров проводят на основе рассчитанной приведенной плотности состояний.

Среди характеристик, которые получаются на основе *ab initio* расчетов электронных и структурных свойств простых твердых тел, следует назвать кристаллическую структуру, параметры решетки, упругие константы, такие как объемный модуль упругости и модуль сдвига, энергии связи, фононные спектры и т.д. При рассмотрении электронных свойств также приводятся производные по давлению прямых и непрямых запрещенных щелей и рентгеновские структурные факторы. Все эти параметры получаются из полной энергии системы.

Свойства основного состояния кристалла можно получить из полной энергии через уравнение состояния при p = 0 и T = 0

1202

$$\left(\frac{\partial E}{\partial V}\right)_{S} = 0, \qquad (2)$$

где *S* — энтропия. Для расчета нами было выбрано наиболее часто используемое уравнение состояния — уравнение Бирча-Мурнагана третьего порядка [11]

$$E(V) = E_0 + \frac{9}{8} B_0 V_0 \left(\left(\frac{V_0}{V}\right)^{2/3} - 1 \right)^2 \times \left(1 + \left(\frac{4 - B'}{2}\right) \left(1 - \left(\frac{V_0}{V}\right)^{2/3} \right) \right), \quad (3)$$

где E_0 — минимум полной энергии, V_0 — равновесный объем. Объемный модуль сдвига определялся из соотношения

$$B = V \frac{d^2 E_{\text{tot}}}{dV^2}.$$
 (4)

Равновесный объем V_0 (объем элементарной ячейки, при котором полная энергия минимальна), объемный модуль сжатия B_0 и его производную по давлению B'_0 находим путем подгонки методом наименьших квадратов уравнения (2) к рассчитанным значениям полной энергии. Гидростатический потенциал деформации α_D вводится как произведение объемного модуля сжатия и барического коэффициента изменения вершины валентной зоны

$$\alpha_D = B_0 \, \frac{dE_V}{dp}.\tag{5}$$

При оптимизации структурных параметров равновесный объем ячейки находили при фиксированных экспериментальных значениях *a/b* и *c/b* [3]. Далее, используя полученный теоретический объем ячейки,

Таблица 1. Относительные координаты атомов в элементарной ячейке кристаллов LiRbSO₄

	x/a		У	/ <i>b</i>	z/c	
Атом	Теория	Экспе- римент	Теория	Экспе- римент	Теория	Экспе- римент
Li	0.245	0.2449	0.410	0.4131	0.317	0.3268
Rb	0.735	0.7405	0.231	0.2177	0.5002	0.5030
S	0.2449	0.2473	0.079	0.0808	0.2035	0.2064
Q(1)	0.2495	0.2523	0.0925	0.0928	0.0346	0.0425
O(2)	0.1446	0.1587	0.2162	0.2176	0.2707	0.2718
O(3)	0.5045	0.4975	0.0517	0.0481	0.2614	0.2644
O(4)	0.0802	0.0776	-0.0454	-0.0355	0.2485	0.2493

Таблица 2. Равновесные структурные параметры кристаллов LiRbSO₄ $(a, b, c \text{ вÅ}, \text{объем элементарной ячейки } V_0 \text{ вÅ}^3)$

	а	b	с	a/b	c/b	V_0
Теория	5.288	9.121	8.700	0.58	0.954	419.62
Эксперимент	5.303	9.134	8.717	0.58	0.954	422.23

Рис. 3. Зонно-энергетическая структура LiRbSO₄ вдоль высокосимметричных линий зоны Бриллюэна при нормальном давлении (сплошные линии) и при давлении 1.5 GPa (пунктирные линии).

оптимизировали соотношения параметров решетки a/b и c/b. В табл. 1 и 2 приведены теоретические параметры решетки и относительные координаты атомов в элементарной решетке кристалла LiRbSO₄ в парафазе.

При расчете полной энергии для разных объемов элементарной ячейки проводилась релаксация позиций ионов с учетом рассчитанных атомных сил и определялось интегральное напряжение ячейки [11,12].

Получены равновесные величины: минимум полной энергии $E_0 = -11513.58$ eV, объем элементарной ячейки равновесного состояния $V_0 = 419.62$ Å³, модуль объемного гидростатического сжатия $B_0 = 98.6$ GPa, его первая производная по давлению $B'_0 = 4.45$ для монокристаллов LiRbSO₄.

С помощью полученных теоретически структурных параметров рассчитана зонная диаграмма монокристаллов LiRbSO₄ (рис. 3). При расчете зонной диаграммы кристалла под давлением также проводилась релаксация позиций ионов.

В табл. З приведены первая и вторая производные по давлению энергетической разности между состояниями верхней (валентной) зоны и нижней зоны (зоны проводимости), которые являются актуальными при формировании переходов возле края фундаментального поглощения.

Коэффициент изменения с давлением наименьшей прямой энергетической щели между состояниями в точке Γ зоны Бриллюэна составляет $dE_g/dp \sim -1.48 \text{ eV/bar}$, т.е. прямая щель в LiRbSO₄ уменьшается при увеличении давления.

Следует отметить, что барические изменения ширины запрещенной зоны кристаллов LiRbSO₄ достаточно хорошо согласуются с барическими изменениями показателей преломления данного кристалла. На рис. 4 представлена дисперсия n; при комнатной температуре механически свободных и зажатых при приложении одноосных давлений кристаллов LiRbSO₄. Анализ барических изменений n; проводился на базе исследований влияния одноосных механических давлений на двупреломляющие свойства данных кристаллов [13,14]. Как видно из рисунка, дисперсия n; кристаллов LiRbSO₄ в видимой части спектра нормальная $(\partial n_i/\partial \lambda < 0)$ и при приближении к краю поглощения резко возрастает. При этом $n_v > n_z > n_x$, а $dn_x/d\lambda < dn_z/d\lambda < dn_y/d\lambda$. Установлено, что дисперсия n_i кристаллов LiRbSO₄ под влиянием одноосных давлений существенно не изменяется $(dn_a/d\lambda = 3.02 \cdot 10^{-4})$ и $3.19 \cdot 10^{-4}$, а $dn_c/d\lambda = 3.07 \cdot 10^{-4}$ и $3.38 \cdot 10^{-4}$ в районе $\lambda = 500\,\mathrm{nm}$ для механически свободного и зажатого при приложении одноосного давления $\sigma_z = 200 \,\mathrm{bar}$ образцов соответственно). Установлено, что при воздействии одноосных давлений n_i кристалла LiRbSO₄ увеличиваются (табл. 4).

Известно [15], что n_i и ширина запрещенной зоны E_g связаны между собой соотношением Мосса

$$n^4 E_{g} = \text{const.} \tag{6}$$

Продифференцировав его по давлению σ , получим

$$\frac{dE_g}{d\sigma} = -\frac{4}{n}\frac{dn}{d\sigma}E_g.$$
(7)

Видно, что уменьшение E_g при воздействии давления будет сопровождаться увеличением n_i . Используя полу-

Таблица 3. Барические коэффициент изменения энергетического положения E состояний валентной зоны (индекс v) и зоны проводимости (индекс c) относительно вершины валентной зоны LiRbSO₄

	E, eV	dE/dp, meV/GPa	d^2E/dp^2 , meV/GPa
Γ_v	-0.07	-58.3	0.6
Γ_c	5.12	-206.9	12.8
Y_v	-0.12	-49.4	-4.3
Y_c	5.83	-121.9	13.6
B_v	-0.09	-96.4	-1.87
B_c	5.81	-212.7	6.45
D_c	6.87	-145.0	-8.1

Таблица 4. Барические коэффициенты изменения показателей преломления $\partial n_i / \partial \sigma_m (10^{-7} \text{ bar}^{-1})$ кристалла LiRbSO₄

Направление	$\lambda = 300 \text{nm}$			$\lambda = 500 \text{nm}$		
давления	X	Y	Ζ	X	Y	Ζ
X	9.1	12.8	4.1	6.0	10.1	9.0
r Z	6.2 9.8	6.0 5.7	5.8 4.9	6.1 6.6	4.9 4.9	9.8 6.8

Рис. 4. Дисперсия показателей преломления при комнатной температуре механически свободных (светлые точки) и зажатых при приложении одноосных давлений (темные точки) кристаллов LiRbSO₄. $1 - n_y$, $2 - n_x$.

ченные нами значения $n_i \sim 1.5$, $E_g \sim 5.2 \,\text{eV}$ и $dE_g/d\sigma$, можно определить, что в среднем $dn_i/d\sigma \sim 10^{-6} \,\text{bar}^{-1}$, что согласуется с результатами барических изменений n_i (табл. 4).

3. Заключение

Таким образом, в данной работе методом псевдопотенциалов Бачелета-Хаманна-Шлютера определена зонно-энергетическая структура монокристаллов LiRbSO₄. Установлено, что вершина валентной зоны локализована в точке D ($\mathbf{k} = (0.5, 0.5, 0)$), дно зоны проводимости находится в точке Γ ($E = 5.16 \,\mathrm{eV}$). Ширина наименьшей прямой запрещенной щели составляет 5.20 eV. Вершина валентной зоны образована связывающими *p*-орбиталями S. Дно зоны проводимости сформировано в основном s, p-состояниями Li и Rb, гибридизированными с антисвязывающими р-состояниями серы и кислорода. Определены барические коэффициенты изменения энергетического положения Е состояния валентной зоны и зоны проводимости. Коэффициент барического изменения наименьшей прямой энергетической щели между состояниями в точке Г зоны Бриллюэна равен $-1.48 \cdot 10^{-5} \, \text{eV/bar}$. Установлено, что уменьшение E_g при действии давления будет сопровождаться увеличением показателя преломления $(dn_i/d\sigma \sim 10^{-6} \text{ bar}^{-1}).$

Список литературы

- К.С. Александров, Б.В. Безносиков. Структурные фазовые переходы в кристаллах (семейство сульфата калия). Наука, Новосибирск (1993). 286 с.
- [2] W. Steurer, H. Wittmann, H. Jagodzinski. Acta Cryst. B 42, 11 (1986).
- [3] A. Kunishge, H.J. Mashiyama. J. Phys. Soc. Jap. 56, 9, 3189 (1987).

- [4] H. Mashiyama, H.-G. Unruh. J. Phys. Soc. Jap. 54, 2, 822 (1985).
- [5] K. Hasebe, T. Asahi. Phys. Rev. B 41, 10, 6794 (1990).
- [6] M.I. Kolinko. J. Phys.: Cond. Matter 6, 1, 167 (1994).
- [7] М.И. Колинько, О.В. Бовгира. УФЖ 46, 7, 707 (2001).
- [8] G.B. Bachelet, D.R. Hamann, M. Schlüter. Phys. Rev. B 26, 8, 4199 (1982).
- [9] D.J. Chadi, M.L. Cohen. Phys. Rev. B 8, 5, 5747 (1973).
- [10] В.В. Немошкаленко, В.Н. Антонов. Методы вычислительной физики в теории твердого тела. Зонная теория металлов. Наук. думка, Киев (1985). 408 с.
- [11] R.E. Cohen, O. Gulseren, R.J. Hemley. Amer. Mineralologist. 85, 338 (2000).
- [12] P. Ravindran, G. Subramoniam, R. Asokamani. Phys. Rev. B 53, 3, 1129 (1996).
- [13] В.И. Стадник, М.О. Романюк, Л.Т. Карплюк. ЖФД 7, 3, 349 (2003).
- [14] В.И. Стадник, М.О. Романюк, Л.Т. Карплюк. УФЖ 49, 8, 808 (2004).
- [15] T. Moss. Optic properties of semiconductors. London (1961).296 p.