01;03;11

Влияние конечной азимутальной энергии поверхностного сцепления на переход Фредерикса в каплях нематика с биполярной структурой

© О.А. Афонин, В.Ф. Названов

Саратовский государственный университет

Поступило в Редакцию 30 июня 1997 г.

Решена задача приближенного теоретического описания электрически индуцируемого перехода Фредерикса в каплях нематического жидкого кристалла (НЖК) с биполярной структурой для случая конечной азимутальной энергии поверхностного сцепления, обусловленной взаимодействием поверхностного слоя НЖК с ориентированной надмолекулярной структурой полимера вблизи границы раздела капля/диспергирующая полимерная матрица. В рамках монодоменного приближения, допускающего только масштабные деформации и нелокальные повороты ориентационной структуры НЖК, получено аналитическое выражение для критического поля перехода Фредерикса, которое учитывает размерные эффекты, связанные с поверхностными взаимодействиями.

В последнее десятилетие наблюдается устойчивый рост интереса к исследованию полевых ориентационных эффектов в анизотропных дисперсных средах, представляющих собой взвеси капель нематического жидкого кристалла (НЖК) в полимерных матрицах [1,2]. Это связано с рядом нетривиальных физических свойств жидких кристаллов в малых объемах с замкнутой геометрией, а также с перспективами применения дисперсных систем ЖК–полимер в устройствах отображения информации [1]. Возникающие полевые ориентационные явления [2] можно, по существу, рассматривать как разновидности перехода (эффекта) Фредерикса, обычно наблюдаемого в планарных массивах НЖК [3,4]. Недавние экспериментальные исследования [5–10] показали, что одним из главных факторов, определяющих структурные изменения в биполярных каплях нематика (рис. 1) под действием внешнего электрического поля \mathbf{E}_0 , является наличие анизотропных поверхностных взаимодействий, обусловленных упорядоченной организацией полимера

87

Рис. 1. *а* — схематическое изображение ориентации оси симметрии биполярной структуры НЖК (директора капли) \hat{N} относительно большой оси эллипсоида \hat{L} и вектора напряженности внешнего электрического поля E_0 . Показано сечение плоскостью (\hat{N} , E_0); *b* — зависимость угла ориентации ϑ директора капли \hat{N} от приведенного внешнего поля *e* и угла начальной ориентации ϑ_L .

на границе раздела капля/матрица. Между тем существующие теоретические модели [1–19] предполагают лишь вырожденную тангенциальную поверхностную ориентацию, которая допускает свободное азимутальное вращение локального директора НЖК $\hat{\mathbf{n}}(\mathbf{r})$ относительно нормали к поверхности. В этом случае единственным механизмом, задающим при $\mathbf{E}_0 = \mathbf{0}$ невырожденную пространственную ориентацию оси симметрии биполярной структуры $\hat{\mathbf{N}}$ (директора капли), является несферичность полимерной капсулы и связанная с ней ориентационная анизотропия упругой свободной энергии НЖК [10–19].

В настоящем сообщении рассматривается приближенная феноменологическая модель перехода Фредерикса $\hat{N} \not \parallel E_0 \to \hat{N} \parallel E_0$ в каплях нематика с биполярной структурой, которая учитывает невырожденные тангенциальные граничные условия и связанную с ними азимутальную составляющую поверхностной энергии сцепления.

2. Геометрия задачи показана на рис. 1, *а*. Форма капли аппроксимируется вытянутым эллипсоидом вращения с полуосями $(a; a; b \ge a)$ и малым эксцентриситетом $\delta \ll 1$, где $\delta = [1 - (a/b)^2]^{1/2}$. В отсутствие поля директор \hat{N} ориентирован вдоль единичного вектора \hat{L} ,

задающего пространственную ориентацию большой оси эллипсоида. Мы используем монодоменное приближение, в рамках которого предполагается, что переориентация биполярной структуры происходит как поворот $\hat{\mathbf{N}}$ в направлении поля \mathbf{E}_0 при сохранении фиксированной ориентации локального директора $\hat{\mathbf{n}}(\mathbf{r})$ относительно $\hat{\mathbf{N}}$; таким образом, локальные деформации и гидродинамические течения $\hat{\mathbf{n}}(\mathbf{r})$ во внешнем поле не учитываются, а на поверхности капли $\hat{\mathbf{n}}(\mathbf{r})$ всегда ориентирован параллельно границе раздела ЖК/полимер. В терминах упругой свободной энергии объема нематика F_V , поверхностной свободной энергии F_S и свободной энергии взаимодействия ЖК и электрического поля F_E уравнение баланса моментов кручения, определяющее равновесное (статическое) положение $\hat{\mathbf{N}}$ относительно \mathbf{E}_0 , может быть записано как

$$\frac{\partial}{\partial\vartheta}\left(F_V + F_S + F_E\right) = 0. \tag{1}$$

3. При малых отклонениях формы капли от сферической ($\delta \ll 1$) упругая энергия F_V может быть представлена с точностью до членов первого порядка по δ^2 в виде [17,18]

$$F_V \approx F_V^{(sph)} \left[1 - \delta^2 (\hat{\mathbf{N}} \cdot \hat{\mathbf{L}})^2 \right], \qquad (2)$$

где

$$F_V^{(sph)} = \frac{1}{2} K \int\limits_V \left[(\nabla \cdot \hat{\mathbf{n}})^2 + (\nabla \times \hat{\mathbf{n}})^2 \right] dV$$
(3)

— упругая энергия сферической биполярной капли в одноконстантном приближении [3]; *К* — модуль упругости НЖК. Линии поля директора биполярной структуры $\zeta = \zeta(\rho)$ в цилиндрической системе координат (ρ, ϕ, ζ) с началом в центре капли и осью ζ , совпадающей с осью симметрии \hat{N} , хорошо аппроксимируются семейством кривых, которое определяется уравнением ($\rho - \rho_0$)² + $\zeta^2 = 1 + \rho_0^2$ [20], где $\rho_0 = (c^2 - 1)/2c$, c — постоянная для данной линии (в точке $\rho = c$ эта линия пересекает ось ρ). Численный расчет с помощью (2)–(3) дает $F_V \approx 3.8\pi RK[1 - \delta^2 \cos^2(\vartheta_L - \vartheta)]$ и, следовательно,

$$\frac{\partial F_V}{\partial \vartheta} = -3.8\pi R K \delta^2 \sin\left[2(\vartheta_L - \vartheta)\right],\tag{4}$$

где в качестве характерного размера используется радиус сферы эквивалентного объема $R = (a^2b)^{1/3}$.

4. Как отмечалось в [9,10], в процессе образования дисперсной системы ЖК-полимер участки поверхности биполярной капли, повидимому, играют роль анизотропных "центров роста", где линии директора ЖК $\hat{\mathbf{n}}_{S}(\mathbf{r}_{S})$ определяют направления преимущественной локальной ориентации полимерных цепей вблизи поверхности. Последние задаются векторным полем на сфере единичного радиуса

$$\hat{\mathbf{m}} = \frac{\partial \hat{\mathbf{r}}}{\partial \theta} = \hat{\mathbf{e}}_x \sin \theta \cos \varphi + \hat{\mathbf{e}}_y \sin \theta \sin \varphi - \hat{\mathbf{e}}_z \sin \theta, \qquad (5)$$

которое определено в декартовой системе координат (x, y, z) с началом в центре капли и осью z, совпадающей с осью симметрии эллипсоида $\hat{\mathbf{L}}$; θ и φ — полярный и азимутальный углы соответствующей сферической системы координат. При $\mathbf{E}_0 = 0$ директор ЖК на поверхности ориентирован вдоль $\hat{\mathbf{m}}$: $\hat{\mathbf{n}}_S(\vartheta = \vartheta_L) \equiv \hat{\mathbf{m}}$. Поворот биполярной структуры как целого сопровождается изменением взаимной ориентации директоров $\hat{\mathbf{m}}$ и $\hat{\mathbf{n}}_S$, что приводит к увеличению плотности азимутальной поверхностной энергии $f_a \propto [1 - (\hat{\mathbf{m}} \cdot \hat{\mathbf{n}}_S)^2]$ (поверхностный потенциал в форме Рапини и Папулара [3,4]). Поскольку при этом сохраняется тангенциальная ориентация $\hat{\mathbf{n}}_S$, полярная составляющая поверхностного потенциала не изменяется. Анизотропная часть соответствующей полной поверхностной свободной энергии определяется выражением

$$F_{S} = 2W_{a}R^{2}\int_{0}^{\pi}\int_{0}^{\pi/2} \left[1 - (\hat{\mathbf{m}} \cdot \hat{\mathbf{n}}_{S})^{2}\right]\sin\theta d\theta d\varphi, \qquad (6)$$

где W_a — коэффициент азимутального поверхностного сцепления. Численные расчеты показывают, что хорошим приближением интеграла в (6) является функция $h(\vartheta) = 0.7\pi \sin^2(\vartheta_L - \vartheta)$. Это позволяет записать поверхностную энергию в виде $F_S \approx 1.4\pi R^2 W_a \sin^2(\vartheta_L - \vartheta)$, что дает

$$\frac{\partial F_S}{\partial \vartheta} = -1.4\pi R^2 W_a \sin\left[2(\vartheta_L - \vartheta)\right]. \tag{7}$$

5. При рассмотрении диэлектрического вклада в свободную энергию F_E мы аппроксимируем биполярную каплю изолированным однородноанизотропным диэлектрическим шаром, который погружен в изотропную однородную среду с диэлектрической проницаемостью ε_m и характеризуется диэлектрическим тензором $\bar{\varepsilon}_{ik} = \bar{\varepsilon}_{\perp} \delta_{ik} + (\bar{\varepsilon}_{\parallel} - \bar{\varepsilon}_{\perp}) N_i N_k$.

Главные значения тензора $\bar{\varepsilon}_{\parallel}$ и $\bar{\varepsilon}_{\perp}$ определены относительно \hat{N} и связаны с диэлектрическими проницаемостями нематика ε_{\parallel} и ε_{\perp} соотношениями

$$\bar{\varepsilon}_{\parallel} \approx \varepsilon_{\perp} + (\varepsilon_{\parallel} - \varepsilon_{\perp}) \left\langle (\hat{\mathbf{n}} \cdot \hat{\mathbf{N}})^{2} \right\rangle_{V} = \bar{\varepsilon}_{LC} + \frac{2}{3} \left(\varepsilon_{\parallel} - \varepsilon_{\perp} \right) S_{D},$$

$$\bar{\varepsilon}_{\perp} \approx \varepsilon_{\perp} + \frac{1}{2} \left(\varepsilon_{\parallel} - \varepsilon_{\perp} \right) \left\langle 1 - (\hat{\mathbf{n}} \cdot \hat{\mathbf{N}})^{2} \right\rangle_{V} = \bar{\varepsilon}_{LC} - \frac{1}{3} (\varepsilon_{\parallel} - \varepsilon_{\perp}) S_{D},$$
(8)

где $\bar{\varepsilon}_{LC} = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3$ и $S_D = [3\langle (\hat{\mathbf{n}} \cdot \hat{\mathbf{N}})^2 \rangle_V - 1]/2$ — параметр порядка капли, характеризующий среднюю упорядоченность локального директора $\hat{\mathbf{n}}(\mathbf{r})$ относительно оси симметрии $\hat{\mathbf{N}}$ ($0 \leq S_D \leq 1$; для биполярной капли $S_D \approx 0.76$). В рамках этого приближения свободную энергию F_E можно представить как $F_E = (-1/2)\mathbf{E}^{(U)} \cdot \mathbf{D}^{(U)}V$ [21], где $\mathbf{E}^{(U)}$ и $\mathbf{D}^{(U)}$ — напряженность среднего электрического поля и средняя электрическая индукция внутри капли соответственно, V объем капли. Векторы среднего поля $\mathbf{E}^{(U)}$ и $\mathbf{D}^{(U)}$ и напряженность однородного внешнего электрического поля \mathbf{E}_0 связаны соотношениями $D_i^{(U)} = \varepsilon_0 \bar{\varepsilon}_{ik} E_k^{(U)}$ и $\frac{1}{3} (\mathbf{D}^{(U)} + 2\varepsilon_m \mathbf{E}^{(U)}) = \varepsilon_m \mathbf{E}_0$ [21], что дает

$$F_E = -\frac{2}{3}\pi R^3 \varepsilon_0 E_0^2 \left(k_\perp^2 \bar{\varepsilon}_\perp + \Delta \bar{\varepsilon} \cos^2 \vartheta \right), \qquad (9)$$

где $\Delta \bar{\varepsilon} = k_{\parallel}^2 \bar{\varepsilon}_{\parallel} - k_{\perp}^2 \bar{\varepsilon}_{\perp}$ — эффективная диэлектрическая анизотропия биполярной капли; $k_i = 3\varepsilon_m/(2\varepsilon_m + \bar{\varepsilon}_i)$, $i = \parallel, \perp$. Результирующий диэлектрический момент для директора \hat{N} равен

$$\frac{\partial F_E}{\partial \vartheta} = \frac{2}{3} \pi R^3 \varepsilon_0 \Delta \bar{\varepsilon} E_0^2 \sin(2\vartheta). \tag{10}$$

6. С учетом полученных выражений для упругого, поверхностного и диэлектрического моментов уравнение равновесия (1) для \hat{N} может быть записано в виде

$$\sin\left[2(\vartheta_L - \vartheta)\right] - e^2 \sin(2\vartheta) = 0, \tag{11}$$

где $e = E_0 R \sqrt{\varepsilon_0 \Delta \bar{\varepsilon} / K(5.7\delta^2 + 2.1\lambda)}$ — безразмерный параметр, характеризующий приведенную величину действующего на биполярную каплю электрического поля; $\lambda = RW_a/K$ — безразмерный параметр поверхностного сцепления. Соответствующая зависимость угла ориентации \hat{N} относительно \mathbf{E}_0 от ϑ_L и *е* имеет вид

$$\vartheta = \frac{1}{2} \operatorname{arctg} \left[\frac{\sin(2\vartheta_L)}{e^2 + \cos(2\vartheta_L)} \right].$$
(12)

Рис. 2. Зависимость критического поля $E_C(a)$ и параметра $\psi(b)$ от размера капли R и азимутальной энергии поверхностного сцепления W_a . Расчеты выполнены для типичных значений $b/a = 1.0, 1.2; \varepsilon_{\parallel} = 19, \varepsilon_{\perp} = 5, \varepsilon_m = 8, S_D = 0.76; K = 10^{-11}$ H; $W_a = 0, 10^{-6}, 10^{-5}, 10^{-4}$ H/m [11–19].

Данное выражение в целом совпадает с результатами работ [15,18]. Отличие состоит в перенормировке приведенного поля e, которое теперь отражает влияние конечного поверхностного сцепления и более корректно учитывает упругий и диэлектрический вклады. Зависимость $\vartheta(e, \vartheta_L)$, рассчитанная с помощью (12), показана на рис. 1, b. Пороговый

ориентационный переход $\hat{\mathbf{N}} \perp \mathbf{E}_0 \rightarrow \hat{\mathbf{N}} \parallel \mathbf{E}_0$ наблюдается для $\vartheta_L = \pi/2$ при критической величине поля $e_C = 1$ или, в размерных единицах,

$$E_C = \frac{1}{R} \left(\frac{5.7K\delta^2 + 2.1W_a R}{\varepsilon_0 \Delta \bar{\varepsilon}} \right)^{1/2}.$$
 (13)

Анализ выражения (13) позволяет сделать следующие выводы:

1. Если порог эффекта Фредерикса определяется поверхностными взаимодействиями ($\lambda \gg \delta^2$), напряженность критического поля E_C пропорциональна $R^{-1/2}$, в то время как в случае преобладания упругого вклада, обусловленного несферичностью капли ($\lambda \ll \delta^2$), $E_C \propto R^{-1}$. Это иллюстрирует рис. 2, *a*, на котором показаны зависимости $E_C(R^{-1}, W_a)$, рассчитанные для типичных значений параметров дисперсной системы НЖК-полимер. Экспериментальные значения E_C для биполярных капель с $R \approx 1 \,\mu$ m обычно лежат в интервале $E_C \approx 1 \div 2 \,\text{V}/\mu \text{m}$ [12–14,16,19], что согласуется с полученными теоретическими оценками $E_C(W_a = 10^{-6} \,\text{H/m}) \approx 1.1 \,\text{V}/\mu \text{m}$ и $E_C(W_a = 10^{-5} \,\text{H/m}) \approx 1.5 \,\text{V}/\mu \text{m}.$

2. Соотношение между переориентацией директора капли \hat{N} и возможными предпороговыми ориентационными возмущениями локального директора $\hat{\mathbf{n}}(\mathbf{r})$ в объеме капли можно приближенно оценить с помощью параметра $\psi \equiv E_C/E_F \approx 2\pi^{-1}(5.7\delta^2 + 2.1\lambda)^{1/2}$, где $E_F = \pi (2R)^{-1} (K/\varepsilon_0 \Delta \bar{\varepsilon})^{1/2}$ — величина порогового поля для перехода Фредерикса в планарном слое нематика толщиной 2R при условии жесткой связи с подложкой [3,4]. Зависимость $\psi(R^{-1}, W_a)$ показана на рис. 2, b. При $\psi \ll 1$ возможен достаточно жесткий поворот \hat{N} с сохранением исходной биполярной структуры $\hat{\mathbf{n}}(\mathbf{r})$, изображенной на рис. 1, *a*. Напротив, при $\psi \gg 1$ следует ожидать возникновения сильно искаженной конфигурации $\hat{\mathbf{n}}(\mathbf{r})$ [22], которая может значительно влиять на оптические свойства дисперсных систем НЖК-полимер [23]. В последнем случае оказывается существенной размерная зависимость $\psi \propto R^{1/2}$.

3. Рассматриваемая модель эффекта Фредерикса в биполярной капле нематика накладывает достаточно жесткое ограничение на соотношение диэлектрических проницаемостей НЖК ε_{\parallel} , ε_{\perp} и полимерной матрицы ε_m . Ориентационный переход $\hat{\mathbf{N}} \perp \mathbf{E}_0 \rightarrow \hat{\mathbf{N}} \parallel \mathbf{E}_0$ будет происходить только при выполнении условия ($\varepsilon_{\perp}/\varepsilon_m$) < ($\varepsilon_{\parallel}/\varepsilon_{\perp}$)^{-1/2}, которое обеспечивает положительные значения эффективной диэлектрической анизотропии $\Delta \bar{\varepsilon}$.

Разработка более адекватной теоретической модели, учитывающей локальные деформации директора НЖК в объеме капли, анизотропию упругих констант нематика и кооперативные эффекты деполяризации в системе капель, является предметом дальнейших исследований.

Список литературы

- [1] Жаркова Г.М., Сонин А.С. Жидкокристаллические композиты. Новосибирск: Наука, 1994. 216 с.
- [2] Drzaic P.S. Liquid crystal dispersions. Singapore: World Scientific, 1995. 428 p.
- [3] Де Жен П. Физика жидких кристаллов. М.: Мир, 1977. 400 с.
- [4] Пикин С.А. Структурные превращения в жидких кристаллах. М.: Наука, 1981. 386 с.
- [5] Hermel H., Seeboth A. // J. Appl. Polym. Sci. 1992. V. 46. N 1. P. 143-146.
- [6] Panina Yu.V., Yakovlev D.A. // Abstr. XV Int. Liq. Cryst. Conf. Budapest, Hungary, 1994. P. 312.
- [7] Ji Y., Kelly J.R. // SID Digest. 1995. V. 26. P. 271-274.
- [8] Kim Y.C., Lee S.H., West J.L., Gelerinter E. // J. Appl. Phys. 1995. V. 77. N 5. P. 1914–1922.
- [9] Aphonin O.A. // Proc. SPIE. 1996. V. 2731. P. 168-177.
- [10] Aphonin O.A. // Mol. Cryst. Liq. Cryst. 1996. V. 281. P. 105-122.
- [11] Drzaic P.S. // J. Appl. Phys. 1986. V. 60. N 6. P. 2142-2148.
- [12] Ковальчук А.В., Лаврентович О.Д., Серган В.В. // Письма ЖТФ. 1988. Т. 14. В. 3. С. 197–202.
- [13] Ковальчук А.В., Курик М.В., Лаврентович О.Д., Серган В.В. // ЖЭТФ. 1988. Т. 94. N 5. C. 350–364.
- [14] Drzaic P.S. // Liq. Cryst. 1988. V. 3. N 11. P. 1543-1559.
- [15] Wu B.G., Erdmann J.H., Doane J. W. // Liq. Cryst. 1989. V. 5. N 5. P. 1453-1465.
- [16] Drzaic P.S., Muller A. // Liq. Cryst. 1989. V. 5. N 5. P. 1467-1475.
- [17] Palffy-Muhoray P., Lee M.A., West J.L. // Mol. Cryst. Liq. Cryst. 1990. V. 179.
 P. 445–460.
- [18] Kelly J.R., Palffy-Muhoray P. // Mol. Cryst. Liq. Cryst. 1994. V. 243. P. 11-29.
- [19] Lin H., Ding H., Kelly J.R. // Mol. Cryst. Liq. Cryst. 1995. V. 262. P. 99-109.
- [20] Яковлев Д.А., Афонин О.А. // Опт. и спектр. 1997. Т. 82. № 1. С. 86-92.
- [21] Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982. 624 с.
- [22] Presnyakov V.V, Smorgon S.L., Shabanov F., Zyryanov V.Y. // Abstr. XVI Int. Liq. Cryst. Conf. Kent, USA, 1996. Rep. BIP. 10.
- [23] Aphonin O.F., Nazvanov V.F. // Abstr. XVI Int. Liq. Cryst. Conf. Kent, USA, 1996. Rep. BIP. 08.