Сравнительный анализ двойниковых и гетерофазных структур в кристаллах (1 - x)Pb(Mg_{1/3}Nb_{2/3})O₃-*x*PbTiO₃

© В.Ю. Тополов

Ростовский государственный университет, 344090 Ростов-на-Дону, Россия E-mail: topolov@phys.rsu.ru

(Поступила в Редакцию 21 июля 2005 г.)

Исследованы особенности сосуществования фаз в сложносдвойникованных кристаллах (1-x)Pb(Mg_{1/3}Nb_{2/3})O₃-xPbTiO₃ вблизи морфотропной границы ($0.30 \le x \le 0.40$). Рассмотрены примеры охлаждения кристаллов с x = const при напряженности внешнего электрического поля E = 0, 0.1 MV/m. Определены условия формирования межфазных границ, являющихся плоскостями нулевых средних деформаций, при различных фазовых переходах I рода. Результаты расчетов для фазовых переходов тетрагональная—моноклинная (M_C) фазы и моноклинная (M_C)-моноклинная (M_A) фазы представлены в виде совокупности диаграмм "двойниковые состояния—межфазные границы". Проанализировано влияние 90° доменной (двойниковой) структуры тетрагональной фазы на гетерофазные состояния, связанные с присутствием моноклинных фаз.

PACS: 61.72.Mm, 64.60.-i

кристаллов Электромеханические свойства (PMT-xPT)(1 - x)Pb $(Mg_{1/3}Nb_{2/3})O_3 - x$ PbTiO₃ co структурой типа перовскита [1-3] неразрывно связаны с присутствием в твердых растворах сегнетоэлектрического и релаксорного компонентов, а также с разнообразными гетерофазными [4-7] и доменными (двойниковыми) структурами [4-6,8-10], наблюдающимися вблизи морфотропной границы $(0.30 \le x \le 0.39)$ в определенных интервалах температур Т и напряженностей электрического поля Е. В системе РМТ-хРТ обнаружены и интенсивно исследуются промежуточные моноклинные фазы сегнетоэлектрической природы (M_A -, *М*_{*B*}- и *М*_{*C*}-фазы по терминологии [11] в интервалах 0.26 < x < 0.35 и $0 \le E \le 0.1 \,\text{MV/m}$ [12,13]), дуальные структуры (при 0 < x < 0.24 [14]), а также зависимости лвойниковых структур (ДвС) и гетерофазных состояний от ориентации развитых граней кристалла (например, при x = 0.32 [6]). В кристаллах РМТ–xРТ с $0.30 \le x \le 0.39$ при фазовых переходах (ФП) I рода могут возникать различные гетерофазные состояния, например, кубическая (C)-тетрагональная (T) [5,6], С-ромбоэдрическая (Rh) [4,5], T-Rh [4-7], M_B-M_C [12] $M_C - T$ фазы [12]. Однако до настоящего И времени не исследовалась взаимосвязь ДвС и гетерофазных структур, формирующихся в результате последовательности ФП в кристаллах PMN-xPT с x = const. Настоящая работа посвящена сравнительному анализу ДвС и связанных с ними гетерофазных структур при различных ФП I рода, протекающих в данных кристаллах в широком температурном интервале при E = 0 или $E \neq 0$. Проводимое исследование основывается на экспериментальных температурных зависимостях [13,15–17] параметров перовскитовой ячейки PMN-*x*PT с $0.30 \le x \le 0.40$ и на матричном методе [18,19], позволяющем рассматривать условия упругого согласования сосуществующих фаз и кристаллографические характеристики межфазных границ.

1. Двойниковые структуры и межфазные границы

Матрицы дисторсий механически свободного кристалла определяются в осях OX_j прямоугольной системы координат (рис. 1) с учетом ориентаций кристаллографических осей и объемных концентраций n_k отдельных доменов — компонент двойников. Предполагается, что эти компоненты разделены плоскими недеформированными доменными (двойниковыми) стенками, ориентации которых определяются по формулам [20,21]. Матрица дисторсий *T*-фазы, содержащей 90° доменыдвойники {1, 2} (рис. 1), записывается, согласно [18], в виде

$$||N_{ij}^{(T)}|| = n_1 \begin{pmatrix} \varepsilon_a & 0 & 0\\ 0 & \varepsilon_a & 0\\ 0 & 0 & \varepsilon_c \end{pmatrix} + (1 - n_1) \\ \times \begin{pmatrix} \cos\varphi_t & 0 & -\sin\varphi_t\\ 0 & 1 & 0\\ \sin\varphi_t & 0 & \cos\varphi_t \end{pmatrix} \begin{pmatrix} \varepsilon_c & 0 & 0\\ 0 & \varepsilon_a & 0\\ 0 & 0 & \varepsilon_a \end{pmatrix}, (1)$$

а аналогичная матрица дисторсий *Т*-фазы, содержащей двойники {2, 3}, в виде

$$||N_{ij}^{(T^*)}|| = n_3 \begin{pmatrix} \varepsilon_a & 0 & 0\\ 0 & \varepsilon_c & 0\\ 0 & 0 & \varepsilon_a \end{pmatrix} + (1 - n_3) \\ \times \begin{pmatrix} \cos\varphi_t & -\sin\varphi_t & 0\\ \sin\varphi_t & \cos\varphi_t & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_c & 0 & 0\\ 0 & \varepsilon_a & 0\\ 0 & 0 & \varepsilon_a \end{pmatrix}, (2)$$

где n_k — объемная концентрация k-й двойниковой компоненты; ε_a , ε_c — дисторсии перовскитовой ячейки; $\varphi_t = \arccos[2\varepsilon_a\varepsilon_c/(\varepsilon_a^2 + \varepsilon_c^2)]$ — угол взаимного вращения

Рис. 1. Схематическое изображение доменов — компонент механических двойников — в сегнетоэлектрических фазах кристаллов PMN-*x* PT вблизи морфотропной границы. Оси прямоугольной системы координат (*X*₁*X*₂*X*₃) параллельны кристаллографическим осям перовскитовой ячейки в параэлектрической *C*-фазе. Ориентации доменов в различных фазах задаются базисными векторами **a** и **c**.

)

кристаллографических осей сопряженных компонент вследствие $\varepsilon_a \neq \varepsilon_c$. Для описания сдвойникованной M_C фазы вводятся согласно [22] параметры концентрации f_m (характеризующий объемную долю компоненты {4} в двойнике {4, 5} или компоненты {6} в двойнике {6, 7} (рис. 1)) и v_m (характеризующий объемную долю слоев {6, 7} в четырехкомпонентном двойнике). Соответствующая матрица дисторсий M_C -фазы равна

$$\begin{split} ||N_{ij}^{(MC)}|| &= v_m \begin{pmatrix} \eta_a & 0 & \eta(2f_m - 1) \\ 0 & \eta_b & 0 \\ 0 & 0 & \eta_c \end{pmatrix} + (1 - v_m) \\ &\times \begin{pmatrix} \cos \varphi_{ab} & -\sin \varphi_{ab} & 0 \\ \sin \varphi_{ab} & \cos \varphi_{ab} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_b & 0 & 0 \\ 0 & \eta_a & \eta(2f_m - 1) \\ 0 & 0 & \eta_c \end{pmatrix}, \end{split}$$
(3)

где $\eta_a, \eta_b, \eta_c, \eta$ — дисторсии перовскитовой ячейки, $\varphi_{ab} = \arccos[2\eta_a\eta_b/(\eta_a^2 + \eta_b^2)]$ — угол вращения, аналогичный φ_t из (2) и обусловленный неравенством $\eta_a \neq \eta_b$. Матрица дисторсий M_A -фазы, разбитой на двойники {8, 9} (рис. 1), представляется в виде

$$\begin{split} ||N_{ij}^{(MA)}|| &= n_8 \begin{pmatrix} \rho_a & \rho_{ab} & \rho_{ac} \\ \rho_{ab} & \rho_b & \rho_{bc} \\ \rho_{ac} & \rho_{bc} & \rho_c \end{pmatrix} + (1 - n_8) \\ \times \begin{pmatrix} \cos\varphi_{ac} & 0 & -\sin\varphi_{ac} \\ 0 & 1 & 0 \\ \sin\varphi_{ac} & 0 & \cos\varphi_{ac} \end{pmatrix} \begin{pmatrix} \rho_c & -\rho_{bc} & -\rho_{ac} \\ -\rho_{bc} & \rho_b & \rho_{ab} \\ -\rho_{ac} & \rho_{ab} & \rho_a \end{pmatrix},$$
(4)

где $\rho_a, \rho_b, \rho_c, \rho_{ab}, \rho_{bc}, \rho_{ac}$ — дисторсии перовскитовой ячейки, $\varphi_{ac} = \arccos[2\rho_a\rho_c/(\rho_a^2 + \rho_c^2)]$ — угол вращения,

связанный с неравенством $\rho_a \neq \rho_c$. Матрица дисторсий *C*-фазы $||N_{ii}^{(C)}||$ является единичной

$$||N_{ij}^{(C)}|| = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$
 (5)

Формирующиеся межфазные границы аппроксимируются поверхностями второго порядка [19]

$$\sum_{i,j=1}^{3} D_{ij} x_i x_j = 0, (6)$$

где $D_{ij} = \sum_{t=1}^{3} \left(N_{it}^{(2)} N_{jt}^{(2)} - N_{it}^{(1)} N_{jt}^{(1)} \right)$, а $N_{ij}^{(k)}$ — элементы матриц дисторсий сосуществующих фаз (см. формулы (1)–(5)). Характеристики данных поверхностей определяются [19] в соответствии со знаками инвариантов

деляются [19] в соответствии со знаками инвариантов
уравнения (6)
$$I = D_{11} + D_{22} + D_{33};$$
 $D = \det ||D_{ij}||;$

$$J = \begin{vmatrix} D_{11} & D_{12} \\ D_{12} & D_{22} \end{vmatrix} + \begin{vmatrix} D_{22} & D_{23} \\ D_{23} & D_{33} \end{vmatrix} + \begin{vmatrix} D_{33} & D_{13} \\ D_{13} & D_{11} \end{vmatrix}.$$
(7)

Условиям DI < 0; J < 0 (область I), DI < 0; J > 0(область II) и DI > 0; J < 0 (область III) удовлетворяют конические межфазные границы. Неравенства DI > 0; J > 0 (область IV) соответствуют вершине мнимого конуса. Условия DI = 0; J < 0 или D = 0;J < 0 (вследствие $I \neq 0$) соответствуют межфазным

Физика твердого тела, 2006, том 48, вып. 7

,

границам — плоскостям нулевых средних деформаций (ПНСД). При упругом согласовании сосуществующих фаз вдоль ПНСД в кристаллах имеет место полная релаксация внутренних механических напряжений. Далее мы рассмотрим примеры гетерофазных состояний и межфазных границ, формирующихся в сложнодвойникованных кристаллах PMN–xPT с x = const.

2. Результаты расчетов и их обсуждение

2.1. С-Т ФП. Для описания гетерофазных состояний используются, например, матрицы дисторсий (1), (5) или (2), (5). C-T ФП в кристаллах PMN-*x* PT сопровождается формированием межфазных границ — ПНСД — при разбиении T-фазы на 90° доменыдвойники типов {1, 2}, {2, 3} или {1, 3} (рис. 1) с оптимальными объемными концентрациями n_t^{opt} ; $1 - n_t^{opt}$ (см. таблицу). Охлаждение кристаллов в поле Е приводит к $n_t^{\text{opt}} \rightarrow 1/2$ вследствие того, что параметры ячейки а_t, с_t Т-фазы и а_c С-фазы удовлетворяют условию $c_t - a_c \approx a_c - a_t$. При возрастании x и E = 0 наблюдается монотонное или немонотонное изменение оптимальной концентрации n^{opt}, рассчитанной по данным работы [16] или [15] соответственно. Такое поведение объясняется различными скачками параметров ячейки a_t, c_t и изменением отношения $(c_t - a_c)/(a_c - a_t)$ вблизи морфотропной границы в составах, синтезированных при различных условиях. Кроме того, следует учесть, что рентгеноструктурные данные [15] были получены до обнаружения в твердых растворах PMN-*x* PT промежуточной М_С-фазы [12,16]. Исследуемые межфазные границы для всех случаев, представленных в таблице, ориентируются вдоль семейства плоскостей {*hk*0} перовскитовой ячейки. Ориентации {*hk*0} рассчитываются [5,18] как функции спонтанных деформаций $\xi_a^s = (a_t - a_c)/a_c$ и $\xi_c^s = (c_t - a_c)/a_c$ перовскитовой ячейки.

2.2. $T-M_C$ ФП. Предположим, что T-фаза разбита на двойники двух типов, например $\{1, 2\}$ и $\{2, 3\}$. В первом случае присутствует двойниковая компонента $\{1\}$ (рис. 1) с базисным вектором с || OX_3 и вектором спонтанной поляризации $\mathbf{P}_{s1} \parallel OX_3$. Во втором случае у двойниковых компонент $\{2\}$ и $\{3\}$ с $\perp OX_3$, $\mathbf{P}_{s2} \parallel OX_1$ и $\mathbf{P}_{s3} \parallel OX_2$. ДвС M_C -фазы характеризуется двойниковыми компонентами $\{4\}$, $\{5\}$, $\{6\}$, $\{7\}$, как показано на рис. 1. Для расчетов инвариантов (7) в зависимости от объемных концентраций некоторых типов двойниковых компонент используются элементы матриц дисторсий (1), (3) в первом случае и (2), (3) во втором случае. Соответствующие результаты расчетов представлены в виде диаграмм "двойниковые состояния-межфазные границы" на рис. 2, 3.

Из анализа гетерофазных состояний *T*-фаза (двойники $\{1, 2\}$)-*M*_C-фаза (четырехкомпонентные двойники $\{4, 5, 6, 7\}$) следует, что взаимное расположение кривых и их конфигурации на $v_m - n_1$ -диаграммах существенно зависят от *x* (ср. рис. 2, *a*, *e*, *f* и *g*) и *f*_m (ср. рис. 2, *b*, *c*, *d*

Расчетные значения оптимальных объемных концентраций $(n_t^{opt}, 1 - n_t^{opt})$ 90° доменов *T*-фазы в кристаллах PMN–*x*PT

x	ΦΠ	n_t^{opt}	$1 - n_t^{\text{opt}}$
0.30	C - T [13]	0.763	0.237
0.30	С-Т (по данным нейтроного	0.630	0.370
	рассеяния) [13]		
0.30	C - T (охлаждение в поле	0.547	0.453
	E = 0.1 MV/m) [13]		
0.30	C - T [15]	0.700	0.300
0.31	C - T [15]	0.750	0.250
0.31	C - T [16]	0.742	0.258
0.32	C - T (охлаждение в поле	0.508	0.492
	E = 0.1 MV/m) [17]		
0.33	C - T [16]	0.696	0.304
0.35	C - T [15]	0.607	0.393
0.37	C - T [16]	0.584	0.416
0.40	C - T [15]	0.573	0.427

Примечания. 1. В квадратных скобках во второй колонке приводятся ссылки на параметры ячейки, определенный методами рентгеноструктурного анализа $(0.30 \le x \le 0.40)$ или нейтронного рассеяния (x = 0.30) в окрестности ФП.

2. Результаты расчетов, приведенные в третьей и четвертой колонках, справедливы для любых пар доменов-двойников 1-3 (рис. 1), т. е. t = 1, 2, 3.

и е). Последнее обстоятельство указывает на то, что дисторсии (3) M_C -фазы включая недиагональные элементы $N_{ij}^{(MC)}$ $(i \neq j)$ играют определяющую роль в формировании гетерофазных состояний и ПНСД на $T-M_c$ межфазных границах. Вместе с тем замена параметра концентрации f_m на $1 - f_m$ в формуле (3) не приводит к изменениям $v_m - n_1$ -диаграмм. Иными словами, диаграммы на рис. 2, b, c, d распространяются на гетерофазные структуры в кристаллах РМN–0.33PT соответственно с параметром концентрации $f_m = 1, 0.8, 0.6$. Присутствие линии $v_m = 1$ в области $0 \leq n_1 \leq 1$ на $v_m - n_1$ -диаграммах (рис. 2) является следствием равенства [16] $a_t = b_m$ параметров перовскитовой ячейки при $T-M_C$ ФП в исследуемом интервале x.

Различия между диаграммами, изображенными на рис. 2, а и е, объясняются изменениями баланса скачков параметров ячейки и ее спонтанных деформаций при пересечении морфотропной границы вблизи *x* = 0.31. В то же время диаграммы для $x \ge 0.33$ (рис. 2, *e*-*g*) характеризуются только количественными различиями, связанными с монотонными изменениями [16] скачков параметров ячейки. Границы раздела областей I и III, а также участки прямой $v_m = 1$, принадлежащие к областям I и III (рис. 2), являются ПНСД. Примечательно, что с увеличением f_m происходит "выпрямление" границ I–III (рис. 2, *b–e*), а при $f_m = 0.5$ появляется линия $n_1 = \text{const}$, допускающая изменение параметра концентрации v_m в широких пределах (рис. 2, *a*, *e*-*g*). Кроме того, исчезновение сдвиговых дисторсий у двойников M_C -фазы в случае $f_m = 0.5$ (см. первую и третью матрицы в правой части формулы (3)) приводит к максимуму площади области IV (ср. рис. 2, d и e, а

Рис. 2. Диаграммы "двойниковые состояния-межфазные границы", рассчитанные для $T-M_C \Phi \Pi$ в сдвойникованных кристаллах PMN-*x* PT (матрицы дисторсий *T*- и M_C -фаз (*I*) и (*3*) соответственно) при x = 0.31 (*a*), 0.33 (*b*-*e*), 0.35 (*f*) и 0.37 (*g*). В M_C -фазе параметр концентрации $f_m = 0.5$ (*a*, *e*-*g*), 0 (*b*), 0.2 (*c*), 0.4 (*d*). Расчеты проведены с использованием экспериментальных значений параметров ячейки [16].

Физика твердого тела, 2006, том 48, вып. 7

Рис. 3. Диаграмма "двойниковые состояния—межфазные границы", рассчитанная для $T-M_C$ ФП в сдвойникованном кристалле PMN–*x*PT (матрицы дисторсий *T*- и M_C -фаз (2) и (3) соответственно) при $f_m = 0.5$. Расчеты проведены с использованием экспериментальных значений параметров ячейки [16].

также рис. 2, f, g), в которой не выполняются условия формирования плоских и конических межфазных границ.

Важной особенностью $v_m - n_1$ -диаграмм, изображенных на рис. 2, является изменение взаимного расположения линии $n_1 = \text{const}$ и точки $n_1 = n_t^{\text{opt}}$ (см. таблицу) при увеличении х. Если предположить, что слоистая ДвС Т-фазы, сформировавшаяся в условиях полной релаксации механических напряжений при С-Т ФП, остается неизменной (т.е. $n_1 = n_t^{\text{opt}}$ или $n_1 = 1 - n_t^{\text{opt}}$) вплоть до Т-M_C ФП, можно установить несколько возможностей формирования Т-М_С межфазных границ — ПНСД. Например, при x = 0.31 и $f_m = 0.5$ (рис. 2, *a*) ПНСД соответствуют $n_1 = n_t^{\text{opt}}$, $v_m = v_m^{\text{opt}}$ или $n_1 = n_t^{\text{opt}}$, $v_m = 1$ или $n_1 = 1 - n_t^{\text{opt}}$, $v_m = 1$. При x = 0.33 и $0 < f_m < 0.2$ наблюдается переход границы I–III через точку $n_1 = n_t^{\text{opt}}$ (ср. рис. 2, b и c). Как следствие, в случае $f_m = 0.2$ ПНСД соответствуют $n_1 = n_t^{\text{opt}}, v_m = 1$ или $n_1 = 1 - n_t^{\text{opt}},$ $v_m = 1$, а в случае $f_m = 0.5$ только $n_1 = 1 - n_1^{\text{opt}}, v_m = 1$. Приведенные параметры концентрации указывают на то, что непосредственно вблизи морфотропной границы в *М*_С-фазе кристаллов PMN-*x* PT могут формироваться разнообразные ДвС (содержащие двойниковые компоненты двух или четырех типов) в условиях полной релаксации внутренних механических напряжений.

Интересный пример перестройки ДвС представляют кристаллы РМN–*x* РТ, *T*-фаза которых разбита на домены-двойники {2, 3} (рис. 1). Соответствующая $n_3 - v_m$ -диаграмма при $f_m = 0.5$ содержит всего две линии (рис. 3), причем изменения значений $v_m(n_3)$ не превосходят 2% при варьировании молярной концентрации в интервале $0.31 \le x \le 0.37$. Пересечения вертикальных линий $n_3 = n_t^{opt}$ и $n_3 = 1 - n_t^{opt}$ с границами I–III на $n_3 - v_m$ -диаграмме свидетельствуют в пользу существования ПНСД при $0.31 \le x \le 0.37$; в случае x = 0.37 таких пересечений не установлено. При x = 0.33 мы сталкиваемся с оригинальной ситуацией, когда параметры концентрации удовлетворяют условиям $n_3 = n_t^{opt}$

 $v_m = v_m^{\text{opt}}$ или $n_3 = 1 - n_t^{\text{opt}}$, $v_m = 1 - v_m^{\text{opt}}$ (приведенные равенства выполняются с точностью до 3%). Такое поведение параметров концентрации, а также описанный выше переход границы I–III через точку $n_1 = n_1^{\text{opt}}$ (рис. 2, *b* и *c*) указывают на существование определенной корреляции между параметрами ячейки *T*- и M_C -фаз непосредственно вблизи морфотропной границы.

2.3. $T-M_c$ и M_C-M_A ФП при охлаждении в поле Е. При анализе гетерофазных состояний в кристалле РМN-0.30РТ предполагается, что Е || OX_3 , в T-фазе присутствуют 90° домены-двойники {1, 2} (у доменов типа {1} $P_{s1} \parallel OX_3$), в M_C -фазе — домены двойники {4, 5, 6, 7}, а в M_A -фазе — домены-двойники {8, 9} (рис. 1). Результаты расчетов представлены на двух диаграммах (рис. 4). Изображенная на рис. 4, $a n_t - v_m$ диаграмма отличается от $n_1 - v_m$ -диаграмм, рассчитанных для x = 0.30 (рис. 2, a) и x = 0.33 (рис. 2, e) при E = 0, вследствие изменения баланса скачков параметров ячейки при $T-M_C$ ФП. Если ДвС T-фазы не претерпевает изменений в поле Е вплоть до $T-M_C$ ФП (т.е. $n_1 = n_t^{opt}$ или $n_1 = 1 - n_t^{opt}$, см. таблицу), то формирующаяся ДвС M_C -фазы удовлетворяет услови-

Рис. 4. Диаграммы "двойниковые состояния-межфазные границы", рассчитанные для следующих ФП в сдвойникованных кристаллах РММ-0.30РТ при охлаждении в поле Е || OX_3 . $a - T - M_C$ ФП (матрицы дисторсий T- и M_C -фаз (I) и (3) соответственно) при $f_m = 0.5$; $b - M_C - M_A$ ФП (матрицы дисторсий M_C - и M_A -фаз (3) и (4) соответственно) при $f_m = 0.5$. Расчеты проведены с использованием параметров ячейки [13], измеренных при E = 0.1 MV/m.

ям существования ПНСД на межфазных границах при $v_m = v_m^{\text{opt}}$ (см. горизонтальную границу I–III на рис. 4, *a*). Относительно небольшое (около 10%) увеличение n_1 по сравнению с n_t^{opt} , связанное с подстройкой ДвС *T*-фазы, приводит к формированию ПНСД, удовлетворяющих условию $0 \le v_m \le v_m^{\text{opt}}$ (вертикальная граница на рис. 4, *a*). При монодоменизации *T*-фазы $(n_t \rightarrow 1)$ также возможно формирование ПНСД: в этом случае $v_m = v_m^{\text{opt}}$ или $v_m = 1 - v_m^{\text{opt}}$. Добавим, что подобные тенденции упругого согласования фаз проявляются и при $T-M_C$ ФП в кристалле РМN–0.32PT.¹

Дальнейшая перестройка ДвС, связанная с $M_C - M_A$ $\Phi\Pi$ в поле **Е**, прогнозируется с помощью $v_m - n_8$ диаграммы (рис. 4, b). Данная диаграмма напоминает фрагмент $n_1 - v_m$ -диаграммы (рис. 4, *a*) вблизи пересечения линий $n_1 = \text{const}$ и $v_m = \text{const}$. И это несмотря на симметрийные различия и различные ДвС (преобразование двойниковых компонент $\{4, 5, 6, 7\} \rightarrow \{8, 9\}$ вместо $\{1, 2\} \rightarrow \{4, 5, 6, 7\}$). Взаимное расположение границ I–III и точек $v_m = v_m^{opt}$, определяемых в соответствии с диаграммой рис. 4, а, указывает на особенности формирования ПНСД при $M_C - M_A \Phi \Pi$. Если $v_m = 0.700$ и ДвС М_С-фазы не претерпевает изменений вплоть до $M_C - M_A \Phi \Pi$, то формирующиеся при этом $\Phi \Pi$ межфазные границы являются коническими (области I, II на рис. 4, b). Если ранее вследствие подстройки ДвС *Т*-фазы допускались значения $0 \le v_m \le 0.700$, то теперь $M_C - M_A$ межфазным границам — ПНСД соответствуют значения $0 \le v_m \le 0.269$ (граница I–III на рис. 4, b). Обращает на себя внимание и своеобразная перестановка одной из границ I-III, описывающих ПНСД: вместо $n_1 = 0.641$ на рис. 4, а мы имеем $n_8 = 0.628$ на рис. 4, b. Иначе говоря, объемные концентрации двойниковых компонент, имеющих аналогичные ориентации базисных векторов (компоненты {1} и {8} на рис. 1), становятся практически равными при последовательности $\Phi\Pi T - M_C - M_A$ фазы в поле Е. Здесь прослеживается некоторая аналогия с постоянством [18] объемных концентраций двойниковых компонент Т-и M_A -фаз твердых растворов $Pb(Zr_{1-v}Ti_v)O_3$ в широком температурном интервале при E = 0.

В заключение отметим, что авторами [16,17,23] экспериментально установлены гетерофазные состояния фаз C-T и $T-M_C$ в PMN-*x* PT. На основе рентгеноструктурных данных [16] показано, что сосуществование T-и M_C -фаз при x = 0.31, 0.33, 0.35, 0.37 имеет ряд особенностей и проявляется в различных температурных интервалах. То что поведение гетерофазной системы с x = 0.35 является наиболее сложным [16], по нашему мнению, тесно связано с особенностями n_1-v_m -диаграммы (ограниченные условия формирования ПНСД, наибольшая по площади область IV, см.

рис. 2, *f*). В целом разнообразие ДвС и формирование гетерофазных состояний в кристаллах PMN–*x*PT (x = const из интервала $0.30 \le x \le 0.40$) свидетельствуют в пользу корреляции между структурными параметрами соседствующих фаз (C, T, M_C, M_A) в определенных интервалах T и E. Эта корреляция благоприятствует полной релаксации внутренних механических напряжений при сосуществовании сдвойникованных сегнетоэлектрических фаз и варьировании одного или двух параметров концентрации отдельных двойниковых компонент в каждой фазе.

Автор признателен А.В. Турику, В.Г. Гавриляченко (Россия) и Dr. Z.-G. Ye (Канада) за постоянный интерес к тематике исследований и дискуссию по проблеме гетерофазных состояний в сегнетоэлектрических и родственных кристаллах.

Список литературы

- D. Viehland, J.F. Li, A. Amin. J. Appl. Phys. 92, 7, 3985 (2002).
- [2] X. Zhao, B. Fang, H. Cao, Y. Guo, H. Luo. Mat. Sci. Engin. B 96, 3, 254 (2002).
- [3] R. Zhang, B. Jiang, W. Cao. Appl. Phys. Lett. 82, 5, 787 (2003).
- [4] Z.-G. Ye, M. Dong. J. Appl. Phys. 87, 5, 2312 (2000).
- [5] Z.-G. Ye, V.Yu. Topolov. Ferroelectrics 253, 1-4, 79 (2001).
- [6] C.-S. Tu, C.-L. Tsai, J.-S. Chen, V.H. Schmidt. Phys. Rev. B 65, 10, 104113 (2002).
- [7] V.Yu. Topolov, Z.-G. Ye. Phys. Rev. B 70, 9, 094113 (2004).
- [8] M. Abplanalp, D. Barošová, P. Bridenbaugh, J. Erhart, J. Fousek, P. Günter, J. Nosek, M. Šulc. J. Appl. Phys. 91, 6, 3797 (2002).
- [9] Y. Guo, H. Luo, T. He, H. Lu, Z. Yin. Jpn. J. Appl. Phys. Pt 1. 41, 3A, 1451 (2002).
- [10] V.V. Shvartsman, A.L. Kholkin. Phys. Rev. B 69, 1, 014102 (2004).
- [11] D. Vanderbilt, M.H. Cohen. Phys. Rev. B 63, 9, 094108 (2001).
- [12] A.K. Singh, D. Pandey. Phys. Rev. B 67, 6, 064 102 (2003).
- [13] F. Bai, N. Wang, J. Li, D. Viehland, P.M. Gehring, G. Xu, G. Shirane. J. Appl. Phys. 96, 3, 1620 (2004).
- [14] G. Xu, D. Viehland, J.F. Li, P.M. Gehring, G. Shirane. Phys. Rev. B 68, 21, 212 410 (2003).
- [15] O. Noblanc, P. Gaucher, G. Calvarin. J. Appl. Phys. 79, 8, 4291 (1996).
- [16] B. Noheda, D.E. Cox, G. Shirane, J. Gao, Z.-G. Ye. Phys. Rev. B 66, 5, 054 104 (2002).
- [17] H. Gao, F. Bai, J. Li, D. Viehland, G. Xu, H. Hiraka, G. Shirane. J. Appl. Phys. 97, 9, 094 101 (2005).
- [18] В.Ю. Тополов, А.В. Турик. ФТТ 43, 5, 1525 (2001).
- [19] V.Yu. Topolov. Phys. Rev. B 71, 13, 134103 (2005).
- [20] J. Fousek, V. Janovec. J. Appl. Phys. 40, 1, 135 (1969).
- [21] J. Sapriel. Phys. Rev. B 12, 11, 5128 (1975).
- [22] В.Ю. Тополов, А.В. Турик. ФТТ 44, 7, 1295 (2002).
- [23] C.-S. Tu, R.R. Chien, F.-T. Wang, V.H. Schmidt, P. Han. Phys. Rev. B 70, 22, 220103 (2004).

¹ Соответствующие линейные параметры ячейки измерены недавно [17] при охлаждении кристалла РММ–0.30РТ в поле **E** || OX_3 (E = 0.1 MV/m). Согласно данным [17], в температурном интервале $340 \le T \le 430$ К при охлаждении наблюдаются ФП I рода $C \rightarrow T \rightarrow M_C$ фазы. Отсутствие экспериментальных данных по углу сдвига перовскитовой ячейки в M_C -фазе позволяет сделать оценки только для случая $f_m = 0.5$.