Нейтрон-дифракционное исследование фазовых превращений в высококонцентрированных твердых растворах водорода ZrV_2D_x , 4 < x < 5

© А.Н. Богданова

Российский научный центр "Курчатовский институт", 123182 Москва, Россия E-mail: ban@isssph.kiae.ru

(Поступила в Редакцию 13 сентября 2005 г.)

Исследованы структурные фазовые превращения в высококонцентрированных твердых растворах водорода ZrV_2D_x , 4 < x < 5, в широкой области температур 1.5–310 К. При концентрациях 4 < x < 4.5 обнаружены фазовые превращения, связанные с упорядочением водорода в решетке. В отличие от ранее изученных низкоконцентрированных твердых растворов, x < 4, здесь упорядочение атомов водорода сопровождается изменением их координации в процессе формирования сверхструктуры. Установлено, что этот эффект обусловлен короткодействующим взаимодействием между атомами водорода. Определен новый тип водородной сверхструктуры со стехиометрическим составом ZrV₂D₅. При концентрациях водорода x > 4.5 твердые растворы распадаются в области низких температур. Построена фазовая диаграмма.

Работа частично поддержана Советом по грантам Президента РФ, НШ-2037.2003.2.

PACS: 61.12.Ld, 61.44.Br

1. Введение

Как известно, кубическая фаза Лавеса ZrV_2 легко поглощает водород, образуя твердые растворы внедрения ZrV_2H_x вплоть до максимальной концентрации x = 6. При изменении температуры в этих твердых растворах происходят многочисленные фазовые превращения, связанные с перераспределением водорода в решетке (для обзора см. [1]). Выполненные к настоящему времени нейтрон-дифракционные исследования касались в основном превращений в области низких и средних концентраций водорода, x < 4 (см., например, [2,3]). О высококонцентрированных твердых растворах известно очень немного.

Вблизи максимальной концентрации, x = 6, твердые растворы водорода существуют только в упорядоченном состоянии и характеризуются волновым вектором $\mathbf{k} = (001)$. Их структура определена в [4]. При концентрациях 4 < x < 5 твердые растворы находятся в разупорядоченном состоянии выше комнатной температуры [5]. Атомы водорода хаотически распределены по двум типам тетраэдрических междоузлий, 2Zr + 2V и 1Zr + 3V. Фазовые превращения изучены только на нижней границе [2,3]. Здесь образуется упорядоченная по водороду фаза (водородная сверхструктура) с волновым вектором $\mathbf{k} = 0$, и атомы водорода занимают только один тип междоузлий, 2Zr + 2V.

В настоящей работе приводятся результаты систематического исследования структурных фазовых превращений в области концентраций водорода 4 < x < 5.

2. Образцы и методика эксперимента

Исследование фазовых превращений водорода в ZrV₂H_x было выполнено с помощью наиболее информативного метода — дифракции нейтронов. Для уменьшения некогерентного рассеяния нейтронов использовались образцы, содержащие тяжелый изотоп водорода — дейтерий. В дальнейшем термины "водород" и "гидриды" будут применяться к образцам независимо от их изотопического состава. Образцы $ZrV_2D_{4.32}$, $ZrV_2D_{4.75}$, $ZrV_2D_{4.92}$, а также эталонный образец $ZrV_2D_{3.9}$, были получены методом прямого насыщения водородом интерметаллида ZrV_2 . Методика синтеза описана в [1]. Содержание водорода в образцах определено с точностью ± 0.03 . Образцы были аттестованы на однофазность и однородность с помощью рентгеновского фазового анализа.

Нейтрон-дифракционные эксперименты выполнены в Лаборатории Леона Бриллюэна (Центр исследований в Сакле, Франция). Поиск фазовых переходов осуществлялся на светосильном дифрактометре G4.1 ($\lambda = 2.427$ Å) в наиболее вероятном, согласно [1], диапазоне температур $1.5 \le T \le 315$ К. Полное структурное определение обнаруженных фаз проводилось с использованием данных, полученных на дифрактометре высокого разрешения 3T2 ($\lambda = 1.225$ Å). Данные обрабатывались методом полнопрофильного анализа с использованием программы FullProf [6].

3. Результаты и обсуждение

3.1. $ZrV_2D_{4,32}$: фазовый переход порядокбеспорядок. Водородная сверхструктура нового типа. Изменения на дифракционной картине $ZrV_2D_{4,32}$ начинаются чуть ниже 300 К (рис. 1, *b*) и имеют сильное сходство с изменениями, ранее наблюдавшимися в $ZrV_2D_{4-\delta}$ [2]. Как и в случае $ZrV_2D_{4-\delta}$, выше 300 К на дифракционной картине наблюдается

Атом	Тип позиций	Тип междоузлий	Координаты			Вероятность заполнения
			Х	У	Z	р
Zr	8 <i>a</i>	_	0.125	0.125	0.125	1
V	16 <i>d</i>	_	0.5	0.5	0.5	1
D(1)	96g	2Zr + 2V	0.3114(1)	0.3114(1)	0.1256(2)	0.264(1)
D(2)	32 <i>e</i>	1Zr + 3V	0.2749(3)	0.2749(3)	0.2749(2)	0.272(1)
D(3)	8b	4V	0.375	0.375	0.375	0.048(1)

Таблица 1. Структурные параметры разупорядоченной фазы $ZrV_2D_{4.32}$, T = 340 K

Пространственная группа Fd3m, a = 7.8704(1) Å, $B_{Zr} = B_V = 0.12(2)$ Å², $B_D = 0.98(2)$ Å², $R_{epx} = 2.64\%$, $R_p = 2.76\%$, $R_{Bragg} = 4.14\%$.

сильное диффузионное рассеяние (около $2\theta = 75^{\circ}$ на рис. 1, *b*), которое постепенно исчезает с понижением температуры, и вместо него появляется дополнительное отражение (420), при этом другие отражения расщепляются и меняются по интенсивности. По аналогии с $ZrV_2D_{4-\delta}$ естественно предположить, что здесь происходит фазовый переход типа порядок-беспорядок в водородной подрешетке, в результате которого ближний

Рис. 1. Температурные изменения нейтрон-дифракционных картин (*a*) $\text{ZrV}_2\text{D}_{3.9}$ и (*b*) $\text{ZrV}_2\text{D}_{4.32}$, $\lambda = 2.427$ Å. Индексы отражений даны в ГЦК ячейке неупорядоченной фазы, жирными цифрами обозначено отражение (420), запрещенное в пространственной группе *Fd3m*. Исключены области с отражениями от ванадиевой кассеты.

порядок в расположении атомов водорода сменяется дальним порядком с волным вектором $\mathbf{k} = 0$. Температура перехода, определенная по температурной зависимости пика (420), находится вблизи 290 K, что на 35 K ниже, чем в эталонном образце $ZrV_2D_{3,9}$ (рис. 1, *a*).

Расчет полного профиля дифракционной картины при 340 К (рис. 2, *a*) показал, что твердый раствор водорода $ZrV_2D_{4.32}$ находится в разупорядоченном состоянии. Подавляющая часть атомов водорода (98.5%) располагается в тетраэдрических междоузлиях 2Zr + 2V и 1Zr + 3V, которые заполняются почти равновероятно (табл. 1), что согласуется с [5]. В то же время для достижения наилучшего согласия с экспериментом необходимо некоторое количество атомов водорода (около 1.5%) разместить в тетраэдрических междоузлиях другого типа 4V (табл. 1), которые были проигнорированы в [5]. Пренебрежение этими междоузлиями приводит к увеличению брэгговского R-фактора (R_{Bragg}) почти вдвое.

При 10 К дифракционная картина ZrV₂D_{4.32} совпадает полуколичественно ($R_{\rm Bragg} \approx 16\%$) с картиной, рассчитанной в рамках известной водородной сверхструктуры ZrV_2D_4 (рис. 2, *b*). Естественно предположить, что упорядоченная фаза ZrV2D4.32 отличается от сверхструктуры ZrV₂D₄ распределением избыточных (0.32) атомов водорода. Размещение этих атомов по междоузлиям 2Zr + 2V и 1Zr + 3V, доминирующим в разупорядоченной фазе, является нетривиальной задачей. Сложность заключается в том, что в сверхструктуре ZrV₂D₄ атомы водорода упорядочены таким образом, что все оставшиеся незанятыми междоузлия этих типов полностью блокированы и недоступны для избыточных атомов [7]. Другими словами, сверхструктура ZrV₂D_{4.32}, основанная на междоузлиях 2Zr + 2V и 1Zr + 3V, может реализоваться только в том случае, если частично разрушить саму сверхструктуру ZrV₂D₄. Такие модели с минимальными изменениями сверхструктуры ZrV2D4 были предложены в [7], но ни одна из них не описывает полной дифракционной картины ZrV₂D_{4.32} лучше, чем сама сверхструктура ZrV₂D₄.

В отличие от 2Zr + 2V и 1Zr + 3V междоузлия 4V, второстепенные в разупорядоченной фазе, не блокируются в сверхструктуре ZrV_2D_4 и доступны для избыточных атомов водорода. Добавление в них 0.32 атомов водорода

Рис. 2. Нейтрон-дифракционные картины $ZrV_2D_{4.32}$, $\lambda = 1.2252$ Å: для разупорядоченной фазы, T = 340 K (*a*), и водородной сверхструктуры с $\mathbf{k} = 0$, T = 10 K (*b*, *c*). Крестики — экспериментальные точки. Сплошные линии соответствуют рассчитанным кривым: (*a*) по данным из табл. 1, (*b*) в рамках известной сверхструктуры ZrV_2D_4 [2,3], (*c*) по данным из табл. 2. Ниже экспериментальных приведены разностные кривые между экспериментом и расчетом; вертикальными штрихами отмечены положения брэгговских отражений.

при незначительном разупорядочении сверхструктуры ZrV_2D_4 позволяет полностью описать дифракционную картину $ZrV_2D_{4.32}$ (рис. 2, *c*, табл. 2, детали структурного определения в [8]). Полное заполнение этих междоузлий соответствует стехиометрическому составу упорядоченной фазы ZrV_2D_5 . Однако реальная область существования сверхструктуры ZrV_2D_5 заметно у́же.

3.2. ZrV₂D_{4.75}, ZrV₂D_{4.92}: распад и упорядочение. Как и в случае ZrV₂D_{4.32}, на дифракционных картинах ZrV₂D_{4.75} и ZrV₂D_{4.92} (рис. 3) при низких температурах появляется дополнительное сверхструктурное отражение (420), свидетельствующее о формировании упорядоченной фазы с волновым вектором $\mathbf{k} = 0$. В то же время диффузное рассеяние, указывающее на наличие ближнего порядка в водородной подрешетке, не исчезает, как в ZrV₂D_{4.32}, и остается интенсивным

вплоть до самых низких температур. Казалось бы, оба факта легко примирить, предположив, что в $ZrV_2D_{4.75}$ и $ZrV_2D_{4.92}$ водородная сверхструктура $ZrV_2D_{5-\delta}$ разупорядочена сильнее, чем в $ZrV_2D_{4.32}$. Однако проведенные расчеты не подтвердили это предположение. Низкотемпературные дифракционные картины для $ZrV_2D_{4.75}$ и $ZrV_2D_{4.92}$ не удалось описать даже количественно.

Альтернативой упорядочению является распад твердого раствора. Действительно дифракционные данные для ZrV₂D_{4.75} и ZrV₂D_{4.92} хорошо описываются в предположении, что при низкой температуре водородная структура $ZrV_2D_{5-\delta}$ сосуществует с полностью разупорядоченной фазой ZrV₂D_{~5.1} [7], причем с концентрацией водорода меняется соотношение этих фаз (рис. 4). Параметры сверхструктуры ZrV₂D_{5-δ} в обоих случаях одинаковы и практически совпадают с параметрами, определенными для ZrV₂D_{4.32} (табл. 2), за исключением увеличенных периодов решетки, a = 5.543 Å, c = 7.950 Å, и вероятности заполнения 4V-междоузлий, которая здесь несколько больше, $P_{4\mathrm{V}} \approx 0.5$. Другими словами, область существования сверхструктуры $ZrV_2D_{5-\delta}$ обрывается значительно раньше, чем достигается стехиометрический состав, при $\delta \approx 0.5$.

Рис. 3. Температурные изменения нейтрон-дифракционных картин $ZrV_2D_{4.75}$ (*a*) и $ZrV_2D_{4.92}$ (*b*) $\lambda = 2.427$ Å. Индексы отражений даны в ГЦК ячейке неупорядоченной фазы, жирными цифрами обозначено отражение (420), запрещенное в пространственной группе *Fd3m*. Исключены области с отражениями от ванадиевой кассеты.

Атом	Тип позиций	Тип междоузлий	Координаты			Вероятность заполнения
			х	У	Z	р
Zr	4 <i>a</i>	-	0	0.25	0.125	1
V	8 <i>d</i>	_	0.25	0.25	0.75	1
D (1)	16 <i>f</i>	2Zr + 2V	0.1826(2)	0.4316(3)	0.3136(1)	0.955(9)
D(2)	4 <i>b</i>	4V	0	0.75	0.375	0.312(1)
D(3)	16 <i>f</i>	2Zr + 2V	0	0.6218	0.1243	0.037(2)
D(4)	16 <i>f</i>	2Zr + 2V	0.8134	0.4352	0.3109	0.013(2)
D(5)	16 <i>f</i>	1Zr + 3V	0	0.5478	0.2739	0.006(2)

Таблица 2. Параметры сверхструктуры $ZrV_2D_{4.32}$, T = 10 K

Пространственная группа 14₁/*a*, *a* = 5.5170(1) Å, *c* = 7.9212(2) Å, $B_{Zr} = B_V = 0.14(4) Å^2$, $B_D = 0.98(8) Å^2$, $R_{epx} = 2.92\%$, $R_p = 3.97\%$, $R_{Bragg} = 4.67\%$.

Что касается разупорядоченной фазы $ZrV_2D_{\sim 5.1}$ ($a \approx 7.93$ Å), то она представляет собой предельно насыщенный неупорядоченный твердый раствор водорода, в котором степень заполнения междоузлий 1Zr + 3Vпочти вдвое превышает степень заполнения междоузлий 2Zr + 2V [9].

Рис. 4. Нейтрон-дифракционные картины $ZrV_2D_{4,75}$ и $ZrV_2D_{4,92}$ при низкой температуре T = 1.5 K ($\lambda = 2.427 \text{ Å}$). Крестики — экспериментальные точки. Сплошные линии соответствуют рассчитанным кривым (жирными линиями выделены кривые, соответствующие упорядоченной фазе $ZrV_2D_{5-\delta}$). Ниже экспериментальных приведены разностные кривые между расчетом и экспериментом; вертикальными штрихами отмечены положения брэгговских отражений.

Температура твердых растворов водорода $ZrV_2D_{4.75}$ и $ZrV_2D_{4.92}$, определенная по температурной зависимости сверхструктурного отражения (420), понижается с концентрацией водорода и находится вблизи 240 и 210 K соответственно (рис. 3).

4. Заключение

Результаты проведенного исследования суммированы на фазовой диаграмме (рис. 5). В высококонцентрированных твердых растворах водорода ZrV_2D_x имеют место те же типы фазовых превращений, связанные с перераспределением водорода в решетке — упорядочение и распад — которые ранее наблюдались при низких концентрациях водорода. Особенностью упорядочения при высоких концентрациях является изменение координации атомов водорода, в результате чего возникает потенциальная возможность образования водород-

Рис. 5. Фазовая диаграмма ZrV_2D_x в области высоких концентраций водорода 4 < x < 5. Крестиками обозначены точки, в которых выполнены нейтрон-дифракционные исследования. Сплошные линии соответствуют фазовым границам, восстановленным из нейтрон-дифракционных данных. Штриховая линия соответствует концентрации, выше которой происходит изменение координации водорода при фазовом переходе.

ной сверхструктуры экстремального состава — ZrV_2D_5 . В реальности верхняя граница области существования этой сверхструктуры находится значительно ниже, вблизи состава $ZrV_2D_{4.5}$. Причина такого ограничения составляет предмет отдельного исследования.

Автор признателен А.В. Иродовой, сотрудникам Лаборатории Л. Бриллюэна Ж. Андре и Ф. Буре за полезные обсуждения и помощь в проведении экспериментов.

Список литературы

- [1] А.В. Иродова, О.А. Лаврова, Г.В. Ласкова, М.Е. Кост, Л.Н. Падурец, А.Л. Шилов. ЖНХ **33**, 7, 1879 (1988).
- [2] J.-J. Didisheim, K. Yvon, P. Fischer, P. Tissot. Sol. State Commun. 38, 637 (1981).
- [3] A.V. Irodova, G. Andre, F. Boure. J. Alloys Comp. 302, 159 (2000).
- [4] A.N. Bogdanova, A.V. Irodiva, G. Andre, F. Boure. J. Alloys Comp. 356–357, 50 (2003).
- [5] J.-J. Didisheim, K. Yvon, D. Shaltiel, P. Fischer, P. Bujard, E. Walker. Sol. State Commun. 32, 1087 (1979).
- [6] J. Rodriguez-Carvajal. Physica B 192, 55 (1993).
- [7] A.N. Bogdanova, G. Andre. J. Alloys Comp. 379, 54 (2004).
- [8] A.N. Bogdanova, A.V. Irodova, G. Andre, F. Boure. J. Alloys Comp. 396, 25 (2005).
- [9] V.A. Somenkov, A.V. Irodova. J. Less-Common Met. 101, 481 (1984).