Сверхтонкие взаимодействия на ядрах ¹³⁹La в перовскитах $La_{1-x}Sr_xCoO_3$ (x = 0.25 и 0.50)

© В.С. Покатилов

Московский государственный институт радиотехники, электроники и автоматики (Технический университет), 117454 Москва, Россия

E-mail: pokatilov@mirea.ru

(Поступила в Редакцию 20 сентября 2005 г.)

Методом импульсного ядерного магнитного резонанса измерены сверхтонкие поля B_0 , коэффициенты усиления η и времена поперечной релаксации T_2 на ядрах ¹³⁹La в перовскитах La_{0.75}Sr_{0.25}CoO₃ и La_{0.5}Sr_{0.5}CoO₃ при 4.2 К. Константы сверхтонкой связи P для ядер ¹³⁹La в исследуемых перовскитах не зависят от состава и типа кристаллической решетки. Из данных по η оценены локальные поля анизотропии. Спад амплитуды эха в зависимости от задержки второго радиочастотного импульса τ не является экспоненциальным, причем скорость спада амплитуды увеличивается при росте τ , что указывает на вклад сул-накамуровского взаимодействия в T_2 .

Работа поддержана грантом Российского фонда фундаментальных исследований № 03-02-16836.

PACS: 76.60.-k, 75.50.Dd, 76.60.Lz

В настоящее время магнитоупорядоченные перовскиты $La_{1-x}Sr_xCoO_3$ (0.1 < x < 0.5) вызывают значительный интерес исследователей, так как в них обнаружены интересные электрические и магнитные свойства, например колоссальные магнитосопротивление и эффект Холла [1,2]. Эти соединения характеризуются атомной и магнитной неоднородностью [3-5]. Введение двухвалентных ионов Sr²⁺ вместо трехвалентных La³⁺ в антиферромагнетик и полупроводник LaCoO3 приводит к существенным изменениям свойств в системе La_{1-x}Sr_xCoO₃ [1-5], в частности к появлению ферромагнитных кластеров, обогащенных дырками (ионами Sr^{2+}) и изолированных друг от друга при x < 0.2. Ферромагнитные кластеры начинают перекрываться при x = 0.2. При x = 0.3 - 0.5 в системе появляется металлическая проводимость и возникает ферромагнитное состояние, причем, как предполагается в [1,4,5], кластеры, обедненные дырками, могут существовать до x = 0.5. Кристаллографические исследования [6] показали, что соединения La_{0.75}Sr_{0.25}CoO₃ и La_{0.5}Sr_{0.5}CoO₃ являются однофазными, но с точки зрения магнитных и электрических свойств они сильно неоднородны [5]. Ионы кобальта находятся как в низкоспиновом, так и в высокоспиновом состоянии [7]. Ион La³⁺ в микрообластях имеет окружение из различных магнитных ионов кобальта, что может привести к особенностям в параметрах сверхтонких взаимодействий на ядрах ⁵⁹Со и ¹³⁹La. Соединения системы La_{1-r}Sr_rCoO₃ (x = 0-0.5) исследовались методом ЯМР на ядрах ⁵⁹Со и ¹³⁹La в работах [8,9], где было рассмотрено влияние замещения лантана стронцием на спиновые состояния. Обнаружены очень широкие распределения сверхтонких полей (СТП) на ядрах ⁵⁹Со, указывающие на локальную магнитную неоднородность в перовскитах La_{1-x}Sr_xCoO₃. Цель настоящей работы — исследовать микроскопические динамические свойства в неоднородных магнитных системах La_{0 75}Sr_{0 25}CoO₃ и La_{0 5}Sr_{0 5}CoO₃ методом импульсного ЯМР на ядрах ¹³⁹La.

1. Образцы и методика измерений

Поликристаллические образцы La0.75Sr0.25CoO3 и La0.5Sr0.5CoO3 были получены методом обычной керамической технологии. Приготавливалась смесь оксидных порошков из компонентов соединения в соответствующей пропорции. Порошок прессовался в таблетки, которые отжигались в течение суток при 1000°С на воздухе (с промежуточным трехкратным перетиранием и прессованием в таблетки), а затем — при 1300°С в течение двух суток (с трехкратным перетиранием и прессованием в таблетки) с последующим медленным охлаждением их с печью до комнатной температуры. Полученные образцы La_{0.75}Sr_{0.25}CoO₃ и La_{0.5}Sr_{0.5}CoO₃, как показали рентгеновские измерения, были однофазными и имели соответственно ромбоэдрическую (a = 5.444 Å, c = 13.174 Å) и кубическую (a = 3.843 Å) структуры с параметрами, которые находятся в хорошем согласии с литературными данными [6].

Измерения сверхтонких параметров (сверхтонких полей, коэффициентов усиления и поперечного времени релаксации) были выполнены методом импульсного ЯМР на ядрах ¹³⁹La в соединениях La_{0.75}Sr_{0.25}CoO₃ и La_{0.5}Sr_{0.5}CoO₃ при 4.2 K, причем образцы охлаждались до 4.2 К без внешнего магнитного поля. Длительности t радиочастотных (РЧ) импульсов устанавливались равными $t = t_1 = t_2$ ($t = 1.8 \, \mu s$ для x = 0.25и 2.0 μ s для x = 0.5). Спектры измерялись по точкам в области частот 5-35 MHz. В каждой точке спектра амплитуда РЧ-импульсов поддерживалась постоянной. Амплитуда РЧ-магнитного поля h₁, действующего на образец в РЧ-катушке, определялась по спаду магнитной индукции ядер протона (одноимпульсное возбуждение) в водном растворе CuSO₄ при установке длительности РЧ-импульсов, соответствующих углам поворота ядерной индукции РЧ-импульсов, равным $\pi/2$ и π , на частотах, отвечающих максимумам спектров ЯМР в рассматриваемых перовскитах. Точность оценки амплитуды РЧ-поля h_1 составляет 15—20%. При построении спектров учитывалась зависимость амплитуды сигналов эха A_e от частоты f РЧ-импульсов в виде $A_e \sim f^{-1}$. Были также измерены зависимости A_e от h_1 и от задержки τ между двумя РЧ-импульсами, возбуждающими эхо.

2. Экспериментальные результаты и их обсуждение

На рис. 1 приведены спектры ЯМР ядер ¹³⁹La в соединениях La_{0 75}Sr_{0 25}CoO₃ и La_{0 5}Sr_{0 5}CoO₃ при 4.2 К. Спектры состоят из одиночных и почти симметричных широких линий и лежат в области частот 15-33 MHz с максимумом при 17.8 MHz (x = 0.25) и 23.3 MHz (x = 0.5). СТП B_0 на ядрах ¹³⁹La равны 29.6 kOe (x = 0.25) и 38.8 kOe (x = 0.5). Ширина спектров составляет ~ 6 MHz. Эти данные находятся в хорошем согласии с результатами работы [8]. Спектры ЯМР обусловлены ядрами ¹³⁹La, ионы которых находятся в ферромагнитно упорядоченных кластерах рассматриваемых соединений. Поскольку ионы лантана не имеют магнитных моментов, СТП B_0 на ядрах ¹³⁹La определяются так называемым наведенным СТП, обусловленным поляризацией электронов проводимости магнитными моментами ионов кобальта в ближайших координационных сферах ионов лантана. Если внешнее магнитное поле равно нулю, то СТП на ядрах ¹³⁹La может быть записано в виде

$$B_0 = NP\mu(\text{Co}),\tag{1}$$

1

2

где N — число ближайших соседей ионов кобальта в исследуемых перовскитах (N = 8), P — константа сверхтонкой связи, μ (Co) — средний магнитный момент ближайших ионов кобальта. Магнитные моменты μ (Co) для x = 0.25 и 0.5 были измерены методом нейтронографии в [6] и равны соответственно μ (Co) = 1.58 и 2.20 μ _B. На основе экспериментальных значений для B_0 и μ (Co) были вычислены константы сверхтонкой связи $P = 2.3 \pm 0.1$ и 2.2 ± 0.1 kOe/ μ _B для x = 0.25 и 0.5

PC

0

0

0

0

 ∞

0

Рис. 1. Спектры ЯМР на ядрах ¹³⁹La в перовскитах La_{0.75}Sr_{0.25}CoO₃ (*1*) и La_{0.5}Sr_{0.5}CoO₃ (*2*) при 4.2 K.

Рис. 2. Зависимость амплитуды эха A_e от амплитуды РЧмагнитного поля h_1 в соединениях La_{0.75}Sr_{0.25}CoO₃ (1) и La_{0.5}Sr_{0.5}CoO₃ (2) при 4.2 K.

соответственно. Эти данные показывают, что константы сверхтонкой связи P одинаковы для двух перовскитов и не зависят от содержания стронция и типа кристаллической структуры рассматриваемых соединений.

На рис. 2 представлены зависимости амплитуды эха А_е (в максимуме спектра) от амплитуды РЧ-поля h_1 для соединений La_{0.75}Sr_{0.25}CoO₃ и La_{0.5}Sr_{0.5}CoO₃ при 4.2 К. Зависимости $A_e(h_1)$ очень широкие и имеют два характерных участка. Причем на первом участке $(0-2G) A_e$ быстро растет и обнаруживает неразрешенный максимум при $h_1 \approx 2.2 \,\text{G}$ (для x = 0.25) и 1.7 G (x = 0.5). На втором участке (3-18 G) A_e медленно и плавно возрастает до максимального значения при $h_1 \approx 18.6\,\mathrm{G}$ (x = 0.25) и 13.5 G (x = 0.5), а затем медленно и плавно спадает. В ферромагнетиках РЧ-магнитное поле h_1 , которое возбуждает ядерное спиновое эхо, вызывает осцилляции локальной ядерной намагниченности [10]. Эти осцилляции в свою очередь обусловливают осциллирующие компоненты сверхтонкого поля на ядрах. Интенсивность ЯМР-сигналов, которые наблюдаются при малых уровнях РЧ-мощности, вызвана большим коэффициентом усиления η, который обусловлен осцилляциями локальной электронной намагниченности, и РЧ-поле В₁, действующее на ядерную намагниченность, равно $B_1 = \eta h_1$ [10]. Интенсивность сигналов спинового эха $A_e(h_1)$ ферромагнетика в нулевом магнитном поле определяется формулой (см. например, [11])

$$A_e \sim \eta \sin \theta \sin^2 0.5\theta, \qquad (2)$$

где $\theta = \eta h_1 \gamma t$ — угол вращения намагниченности, вызванной полем h_1 , γ — гиромагнитное отношение для ядер ¹³⁹La. $A_e(h_1)$ (2) имеет максимум при $\theta = 2\pi/3$. Коэффициент усиления η обычно равен 10–10² для ядер

100

50

 A_e , arb. units

в доменах и $10^3 - 10^4$ для ядер в доменных границах [10]. Коэффициент η , вычисленный по положению максимума зависимости $A_e(h_1)$ на основе формулы (2), рассматривается как усредненный по объему образца.

С помощью экспериментальных данных (рис. 2) и формулы (2) были оценены средние значения коэффициентов усиления: $\eta \approx 17$ и 140 для $x = 0.25, \eta \approx 21$ и 160 для x = 0.5. Как видно, соответствующие значения η для первого и второго максимумов в зависимости $A_e(h_1)$ в пределах точности оценок h_1 для изучаемых соединений равны. Исследования рассматриваемых перовскитов методами электронной микроскопии и нейтронографии [6] показали, что в этих перовскитах содержатся микрообласти размером 10-40 nm, в которых наблюдается флуктуация содержания стронция и лантана. Можно предположить, что магнитные домены в таких малых микрообластях отсутствуют. В однодоменных частицах (или внутри доменов) коэффициент усиления η определяется формулой $\eta = B_n/(h_1 + H_K)$ [10], где H_K — локальное поле анизотропии. С учетом того, что $h_1 \ll H_K$, по значениям $\eta \approx 150$ (для второго) и 20 (для первого максимума) были оценены величины $H_K \approx 210 \pm 40$ и 1600 ± 300 Oe соответственно для второго и первого максимума в зависимости $A_e(h_1)$. Эти оценки находятся в хорошем согласии с результатами изучения магнитных свойств в работах [4,5], в которых были измерены петли гистерезиса и показано, что даже в полях 50 kOe магнитное насыщение не достигается, а коэрцитивная сила составляет $H_C \sim 600$ Oe. Таким образом, ЯМР-исследования, проведенные в настоящей работе, показывают, что в рассматриваемых перовскитах существуют микрообласти с большими локальными полями анизотропии, а флуктуации содержания стронция и лантана в микрообластях, вероятно, обусловливают флуктуации Н_К.

На рис. 3 представлены зависимости спада амплитуды спинового эха $A_e(\tau)$ (в логарифмическом масштабе) от интервала т между РЧ-импульсами, возбуждающими эхо, при разных значениях высокочастотного поля h_1 . Как видно, скорости спада $\ln A_e(\tau)$ увеличиваются с ростом т. Это указывает на неэкспоненциальный закон релаксации для ядер ¹³⁹La. Впервые такой спад эха наблюдался в образцах чистого железа, обогащенных стабильным изотопом ⁵⁷Fe [11]. Для наших экспериментальных данных были рассмотрены также зависимости $\ln A_e(\tau^2)$ и $\ln A_e(\tau^3)$. Линейная зависимость наблюдалась только для $\ln A_e(\tau^2)$. Этот анализ показывает, что спад амплитуды спинового эха может быть описан выражением, в котором содержится член вида $A_e \sim \exp(-c\tau^2)$. Такие зависимости спада эха при низких температурах могут наблюдаться, если ответственным за релаксацию является сул-накамуровское (СН) взаимодействие [11-15].

Линейная зависимость $\ln A_e(\tau^2)$ может соответствовать гауссовскому спаду амплитуды эха в виде

$$A_e = A_0 \exp\{-(1/2)(\tau/W)^2\},\tag{3}$$

где A_0 — амплитуда эха при $\tau = 0, W$ — параметр, связанный полушириной распределения и релаксационными

Рис. 3. Спад амплитуды эха A_e в зависимости от амплитуды h_1 РЧ-импульсов и задержки τ при 4.2 К в соединениях La_{0.75}Sr_{0.25}CoO₃ при $h_1 = 3$ (1), 12 G (2) и La_{0.5}Sr_{0.5}CoO₃ при $h_1 = 2$ (3), 12 G (4). Сплошные линии — аппроксимация с помощью формулы (4).

параметрами. Была проведена аппроксимация кинетики спада спинового эха, представленного на рис. 3, с помощью выражения (3). Экспериментальные данные хорошо описываются формулой (3) для малых уровней возбуждения эха, однако при высоких уровнях поля h_1 гауссовский спад описывает только часть спада эха.

В [14] рассматривалась релаксация ядер в магнитных гетерогенных системах. Было показано, что могут наблюдаться различные формы спада $A_e(\tau)$. В зависимости от силы дипольного взаимодействия резонансных ядер и силы косвенного взаимодействия ядерных спинов через виртуальный магнон (СН-взаимодействие) между резонансными, а также между нерезонансными ядрами можно получить экспоненциальную гауссовскую или квазигауссовскую форму спада $A_e(\tau)$.

В [15] было рассмотрено влияние ядерно-электронной релаксации на спад эха с помощью двухимпульсной методики и показано, что если время обратимой расфазировки спинов за счет микроскопической неоднородности СТП много больше характерного времени ядерноэлектронной релаксации, то амплитуда эха в зависимости от задержки второго радиоимпульса τ описывается формулой, содержащей произведение экспоненты ($\exp(-2\tau/T_2)$) и гауссиана ($\exp(-c\tau^2)$). Рассмотрим спад эха $A_e(\tau)$ в виде формулы, содержащей экспоненциальный и гауссовский вклады в спад эха,

$$A_e = A_0 \exp(-2\tau/T_2) \exp(-(\tau/D)^2), \qquad (4)$$

где T_2 — время поперечной релаксации, D — параметр модели, который может быть рассмотрен в моделях [14] и [15]. В рамках модели [14] параметр D выражается через моменты Ван Флекса, а в [15] параметр $D \sim T_1(\Gamma/\Gamma_{ne})^{0.5}$ (T_1 — время продольной релаксации, Γ — время обратимой расфазировки спинов, Γ_{ne} —

параметр ядерно-электронной релаксации). В рассматриваемом случае СН-взаимодействие резонансных ядер ¹³⁹La, дипольная связь резонансных ¹³⁹La и нерезонансных ядер ⁵⁹Co (взаимодействие ближайших соседей) и СН-взаимодействие нерезонансных ядер как ¹³⁹La, так и ⁵⁹Co определяют кинетику спада $A_e(\tau)$ [14]. Применительно к исследуемым соединениям роль нерезонансных ядер могут играть ядра ¹³⁹La, ларморовские частоты которых лежат вне частотной полосы (~ 0.5 MHz) РЧ-импульсов, возбуждающих эхо, а также ядра ⁵⁹Co, так как резонансный спектр ⁵⁹Co расположен при более высоких частотах.

Спад спинового эха, аналогичный спаду, представленному на рис. 3, который хорошо описывался формулой (4), наблюдался на ядрах ¹¹В в аморфных сплавах на основе кобальта [12] и на ядрах ⁵⁹Со в объемных и тонкопленочных образцах системы Co–Ni–Fe [14,15]. Экспериментальные спады амплитуды эха для соединений La_{0.75}Sr_{0.25}CoO₃ и La_{0.5}Sr_{0.5}CoO₃ при 4.2 K (рис. 3) были аппроксимированы выражением (4), результаты аппроксимации показаны сплошными линиями на рис. 3 для некоторых значений h_1 , близких к значениям РЧ-магнитного поля в максимумах зависимостей $A_e(h_1)$.

Были получены следующие значения параметров модели: 1) для $x = 0.25 T_2 = 550 \pm 25 \,\mu$ s и $D = 370 \pm 40 \,\mu$ s при $h_1 = 2 \text{ G}, \quad T_2 = 2800 \pm 400 \, \mu \text{s}$ и $D = 327 \pm 40 \, \mu \text{s}$ при $h_1 = 12$ G; 2) для x = 0.5 $T_2 = 530 \pm 20 \, \mu$ s и $D = 320 \pm 40\,\mu$ s при $h_1 = 2\,\mathrm{G}, T_2 = 570 \pm 50\,\mu$ s и $D = 430 \pm 40 \,\mu \text{s}$ при $h_1 = 12 \,\text{G}$. Как следует из этого анализа, параметр D практически не зависит от состава и h_1 , тогда как параметр T_2 не зависит от состава только при малых значениях h_1 . Сильное различие значений Т₂ для двух составов проявляется при больших амплитудах h_1 . При $h_1 = 12 \,\mathrm{G}$ отношение скоростей релаксаций для соединений с x = 0.25 и 0.5 равно 5. В настоящий момент трудно объяснить наблюдаемую зависимость $T_2(h_1)$ в исследуемых перовскитах. Для нанокристаллических систем релаксационные явления при ЯМР, вероятно, имеют особенности, которые еще не изучены, и требуется дополнительный теоретический анализ кинетики спада двухимпульсного эха в таких микроскопически неоднородных системах.

Список литературы

- G. Briceňo, H. Chang, X. Sun, P.G. Schuitz, X.-I. Xiang. Science 270, 1, 273 (1995).
- [2] J.B. Goodenough. Prog. Solid State Chem. 5, 1, 145 (1972).
- [3] P.M. Raccah, J.B. Godenough. Phys. Rev. 155, 2, 932 (1967).
- [4] M. Abbate, J.C. Feggle, A. Fujimiri, L.H. Tjeng, C.T. Chen, R. Potze, G.A. Savatzky, H. Eisaki, S. Uchida. Phys. Rev. B 47, *12*, 16124 (1993).
- [5] M.A. Seňaris-Rodriguez, J.B. Godenough. J. Solid State Chem. 118, 2, 323 (1995).
- [6] R. Caciuffo, D. Rinaldi, G. Darucca, J. Mira, J. Rivas, M.A. Senaris-Rodriquez, P.G. Radaelli, D. Fiorani, J.B. Goodenough. Phys. Rev. B 59, 2, 1068 (1999).
- [7] J.B. Goodenough. Mater. Res. Bull. 6, 3, 967 (1971).

- [8] M. Itoh, I. Natori. J. Phys. Soc. Jap. 64, 3, 970 (1975).
- [9] P.L. Kuhns, M.J.R. Hoch, W.G. Moulton, A.P. Reyes, J. Wu, C. Leighton. Phys. Rev. Lett. 91, 12, 127 202 (2003).
- [10] Е.А. Туров, М.П. Петров. Ядерный магнитный резонанс в ферро-антиферромагнетиках. Наука, М. (1969).
- [11] M.B. Stearns. Phys. Rev. 162, 2, 496 (1967).
- [12] D. Welz. Physica B 141, 1, 121 (1986).
- [13] В.И. Цифронович. ФТТ 20, 6, 1657 (1978).
- [14] В.С. Покатилов, С.В. Капельницкий, В.А. Каразеев. ФТТ 32, 7, 1982 (1990).
- [15] В.С. Покатилов, С.В. Капельницкий. ФТТ 33, 7, 2186 (1991).