Зарядовые состояния атомов в решетках $HgBa_2CuO_4$ и $HgBa_2CaCu_2O_6$

© В.Ф. Мастеров, Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

(Поступила в Редакцию 20 октября 1998 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопе 67 Cu(67 Zn) определены параметры тензора градиента электрического поля в узлах меди решеток HgBa₂Ca_{n-1}Cu_nO_{2n+2} (n = 1, 2), а также рассчитаны указанные параметры в приближении точечных зарядов. Анализ полученных величин с привлечением литературных данных по ядерному квадрупольному резонансу на изотопе 63 Cu показал, что согласование экспериментальных и расчетных параметров достигается, если предположить, что дырки, появляющиеся в результате дефектности материала, локализуются преимущественно в подрешетке кислорода, находящегося в одной плоскости с атомами меди.

Соединения HgBa₂Ca_{*n*-1}Cu_{*n*}O_{2*n*+2} (HgBaCaCuO) (n = 1, 2) являются типичными представителями высокотемпературных сверхпроводников, и актуальной является проблема определения зарядовых состояний атомов кислорода в решетках HgBaCaCuO, которые играют решающую роль в организации сверхпроводящего состояния в этих керамиках. В настоящей работе для определения зарядового состояния атомов в решетках HgBaCaCuO используется метод эмиссионной мессбауэровской спектроскопии (ЭМС) на изотопе ⁶⁷Cu(⁶⁷Zn).

Мессбауэровские источники $HgBa_2Ca_{n-1}^{67}Cu_nO_{2n+2}$ готовились путем диффузионного легирования соединений HgBa₂CaCuO₆ (1212) ($T_c = 91$ K) и HgBa₂CuO₄ (1201) ($T_c = 74 \,\mathrm{K}$) радиоактивным изотопом $^{67}\mathrm{Cu}$ при 450°C в течение 2 часов в атмосфере кислорода. Мессбауэровские спектры ⁶⁷Cu(⁶⁷Zn) снимались при 4.2 К с поглотителем ⁶⁷ZnS. Типичные спектры приведены на рис. 1, а результаты их обработки — на рис. 2, а. Предполагалось, что в процессе диффузионного легирования материнский изотоп ⁶⁷Cu занимает медные узлы решеток. При этом дочерний изотоп ⁶⁷Zn также оказывается в медных узлах решетки. Поскольку в решетках (1201) и (1212) атомы меди занимают единственную позицию [1,2], то ожидалось, что мессбауэровские спектры 67 Cu(67 Zn) этих образцов будут отвечать единственному состоянию мессбауэровского зонда ⁶⁷Zn²⁺, находящегося в позициях меди. Действительно, как видно из рис. 1, оба спектра представляют собой квадрупольные триплеты, отвечающие единственному состоянию зонда $^{67}Zn^{2+}$.

В общем случае измеренная величина постоянной квадрупольного взаимодействия $C = eQU_{zz}/h$ представляет собой сумму двух членов

$$eQU_{zz} = eQ(1-\gamma)V_{zz} + eQ(1-R_0)W_{zz}, \qquad (1)$$

где Q — квадрупольный момент ядра-зонда, U_{zz} , V_{zz} , W_{zz} — главные компоненты тензоров суммарного, кристаллического и валентного градиентов электрического поля (ГЭП), γ , R_0 — коэффициенты Штернхеймера атома-зонда, h — постоянная Планка.

Для зонда ${}^{67}Zn^{2+}$ вкладом в тензор суммарного ГЭП от валентных электронов можно пренебречь и тогда

$$C(\operatorname{Zn}) \approx eQ(1-\gamma)V_{zz}/h.$$
 (2)

Тензор кристаллического ГЭП можно рассчитать в рамках модели точечных зарядов, так что сравнивая экспериментальные C(Zn) и расчетные $eQ(1 - \gamma)V_{zz}$ величины, оказывается возможным определить эффективные заряды атомных центров в узлах кристаллической решетки.

Рис. 1. Мессбауэровские спектры 67 Cu(67 Zn) соединений (1201) (*a*) и (1212) (*b*). Показано положение компонент квадрупольных триплетов, отвечающих центрам 67 Zn²⁺ в узлах меди.

Рис. 2. a — диаграмма C(Cu)-C(Zn) для соединений двухвалентной меди (сплошная прямая). b — диаграмма $C(Cu)-V_{zz}$ для соединений двухвалентной меди. Точками представлены данные: I — Cu в (1201), 2 — Cu в (1212). Индексы A и B обозначают модели расчета V_{zz} .

Мы провели расчет тензоров кристаллического ГЭП в узлах меди решеток HgBaCaCuO. При этом решетки представлялись в виде суперпозиции нескольких подрешеток: [Hg][Ba₂][Cu][O(1)₂][O(2)₂], [Hg][Ba₂][Ca][Cu₂][O(1)₄][O(2)₂], а ГЭП вычислялся в виде суммы вкладов от этих подрешеток. Отметим, что атомы O(1) находятся в одной плоскости с атомами меди. При расчетах использовались структурные данные [1,2]. Тензоры решеточных сумм в узлах меди от всех подрешеток оказались диагональными в кристаллографических осях и аксиально-симметричными.

Если использовать для центров ⁶⁷Zn²⁺ значения $\gamma = -12.2$ [3] и Q = 0.17b [4], то для модели A, соответствующей стандартным валентным состояниям атомов (Hg²⁺, Ba²⁺, Ca²⁺, Cu²⁺, O²⁻), получим для узлов меди решетки HgBa₂CuO₄ $eQ(1 - \gamma)V_{zz} \approx 67$ MHz и для узлов меди решетки HgBa₂CaCu₂O₆ $eQ(1 - \gamma)V_{zz} \approx 73$ MHz. Эти значения существенно отличаются от экспериментальных величин C(Zn). Природа этих расхождений может быть установлена на основе совместного анализа данных ЭМС на изотопе ⁶⁷Cu(⁶⁷Zn) и данных ядерного квадрупольного резонанса (ЯКР) на изотопе ⁶³Cu для узлов меди в решетках металлоксидов меди. На рис. 2, *а* приведена диаграмма C(Cu)-C(Zn), построенная в работе [5]. Для двухвалентных соединений меди экспериментальные данные укладываются на прямую

$$C(Zn) = 197 - 11.3C(Zn),$$
 (3)

где C(Cu) и C(Zn) даны в MHz.

Было показано, что основной причиной отклонения экспериментальных данных от прямой (3) является отличие валентности меди от +2.

Дополнительную информацию можно получить из диаграммы $C(Cu) - V_{zz}$, предложенной в [5], (рис. 2, *b*). По оси абсцисс этой диаграммы отложены рассчитанные главные компоненты тензора кристаллического ГЭП V_{zz} для позиций меди, в которых методом ЯКР ⁶³Си измерены C(Cu). Диаграмма $C(Cu) - V_{zz}$ описывается выражением

$$C(\mathrm{Cu}) = 179 - 191.4V_{zz},\tag{4}$$

где C(Cu) дана в MHz, а V_{zz} в единицах е/Å³.

Для диаграммы $C(Cu) - V_{zz}$ существует еще одна причина отклонения от прямой (4) — неправильный расчет тензора ГЭП из-за несовершенства выбора зарядов атомов.

Данные ЯКР ⁶³Си для соединений (1201) [6] и (1212) [7] вместе с нашими данными ЭМС ⁶⁷Cu(⁶⁷Zn) приведены на диаграмме C(Cu)-C(Zn) (рис. 2, *a*). Видно, что все точки удовлетворительно соответствуют соотношению (3), т.е. медь в соединениях HgBaCaCuO двухвалентна. Однако отсутствует согласие с линейной зависимостью (4) на диаграмме $C(Cu) - V_{zz}$ (рис. 2, b), если расчет V_{zz} проводить в предположении стандартных зарядов атомов (модель А). Очевидно, отклонения данных от линейной зависимости (4) следует объяснять несовершенством выбора модели распределения зарядов по узлам решеток при расчете V_{zz} . Согласие достигается для моделей типа В, в которых для соединений (1201) и (1212) необходимо локализовать дырки на узлах O(1). Для исследованных соединений такие дырки могут появиться за счет стабилизации части атомов ртути в одновалентном состоянии. При расчетах тензора ГЭП в моделях типа В предполагалось, что в соединениях (1201) и (1212) в одновалентном состоянии находится соответственно 30 и 90% атомов ртути. Однако отметим, что данные фотоэлектронной спектроскопии (см., например, [8]) не подтверждают наличия ртути в одновалентном состоянии, и не исключено, что для объяснения дырок в подрешетках кислорода дырок необходимо учитывать дефектность материала.

Таким образом, методом ЭМС на изотопе ${}^{67}Cu({}^{67}Zn)$ определены параметры тензора ГЭП в узлах меди решеток $HgBa_2Ca_{n-1}Cu_nO_{2n+2}$ (n = 1, 2) и проведен расчет этих параметров в приближении точечных зарядов. Проведен анализ величин постоянной квадрупольного взаимодействия для центров ⁶⁷Zn²⁺ (данные ЭМС ⁶⁷Cu(⁶⁷Zn)) и ⁶³Cu²⁺ (литературные данные ЯКР и ЯМР ⁶³Cu), а также величин главной компоненты тензора кристаллического ГЭП в узлах меди различных металлоксидов меди. Согласование экспериментальных и рассчитанных значений параметров тензора ГЭП для соединения HgBaCaCuO может быть осуществлено, если предположить, что дырки, появляющиеся в результате дефектности материала, локализуются преимущественно в подрешетке кислорода, находящегося в одной плоскости с атомами меди.

Работа поддержана Российским фондом фундаментальных исследований (грант № 97-02-16216).

Список литературы

- J.L. Wagner, P.G. Radaelli, D.G. Hinks, J.D. Jorgensn, J.F. Mitchell, B. Dabrowski, G.S. Knapp, M.A. Beno. Physica C210, 447 (1993).
- [2] L.W. Finger, R.M. Hazen, R.T. Downs, R.L. Meng, C.W. Chu. Physica C226, 216 (1994).
- [3] R. Sternheimer. Phys. Rev. 146, 140 (1966).
- [4] A. Forster, W. Potzel, G.M. Kalvius. Z. Phys. B37, 209 (1980).
- [5] В.Ф. Мастеров, Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин. ФТТ 37, 3400 (1995).
- [6] T. Machi, R. Usami, H. Yamauchi, N. Koshizuka, H. Yasuoka. Physica C235–240, 1675 (1994).
- [7] M. Horvatic, C. Berhier, P. Garretta, J.A. Gillet, P. Segransan, Y. Berthier, J.J. Capponi. Physica C235–240, 1669 (1994).
- [8] R.P. Vasquez, M. Rupp, A. Gupta, C.C. Tsuei. Phys. Rev. B51, 15657 (1995).