Случайная анизотропия квази-2D антиферромагнетиков R₂CuO₄ (R = Nd, Pr, Sm, Gd, Eu)

© Е.И. Головенчиц, В.А. Санина

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: E.Golovenchits@shuvpop.ioffe.rssi.ru

(Поступила в Редакцию 13 ноября 1998 г.)

Изучаются механизмы случайной анизотропии для кристаллов R_2CuO_4 , обусловленной наличием эффективных взаимодействий между моментами редкоземельных ионов и между орбитальными моментами ионов Cu^{2+} через спиновые флуктуации. Из анализа экспериментальных данных для кристаллов R_2CuO_4 (R = Eu, Pr, Gd) проводятся оценки величин эффективных полей случайной анизотропии.

Кристаллы семейства R₂CuO₄, где (R = Pr, Nd, Gd, Sm, Eu) принадлежат к классу квазидвумерных (квази-2*D*) гейзенберговских антиферромагнетиков, построенных на основе квадратных решеток ионов Cu²⁺ со спином S = 1/2 в слоях CuO₂. Все кристаллы семейства, за исключением Gd₂CuO₄, обладают тетрагональной симметрией T'(I4/mmm) [1]. В Gd₂CuO₄ при $T \sim 660$ К имеется структурный фазовый переход из высокотемпературной тетрагональной T' в низкотемпературную орторомбическую фазу с пространственной группой *Acam* [2].

В соответствии с данными нейтронных измерений интенсивности Брэгговских пиков (см., например, [3]) температура Нееля для антиферромагнетиков R_2CuO_4 составляет обычно $T_N \simeq 250-300$ К. При этом полагается, что ниже T_N в Си-подсистеме имеется 3D однородный дальний антиферромагнитный порядок.

Однако исследования СВЧ спиновой динамики для кристаллов R_2CuO_4 (R = Eu, Pr) обнаружили наличие 2D однородных, хорошо определенных спин-волновых возбуждений типа спиновых волн в широкой области температур как при $T \ll T_N$, так и при $T \gg T_N$ [4,5]. Одновременное экспериментальное наблюдение проявлений 3D и 2D состояний при температурах $T < T_N$ приводят к предположению о наличии в тетрагональных кристаллах R_2CuO_4 квази-2D Random Field (RF) состояния. Таким образом, полагается, что при $T < T_N$ 3D антиферромагнитное упорядочение существует в областях ограниченного масштаба и имеются 2D гейзенберговские антиферромагнитные спиновые флуктуации с большими корреляционными радиусами [5,7].

Наличие 2D гейзенберговских антиферромагнитных спиновых флуктуаций характерно для всего класса квази-2D соединений, построенных на слоях CuO₂, при отсутствии однородного 3D дальнего антиферромагнитного порядка [8]. Корреляционный радиус этих флуктуаций определяется формулой [8]

$$\xi = a \exp(2\pi \rho_s / k_B T), \tag{1}$$

где a — постоянная решетки, а $2\pi\rho_s \simeq 1500 \,\mathrm{K}$ — 2D антиферромагнитная спиновая жесткость. Величина

 $2\pi\rho_s \simeq J, J$ — константа 2D гейзенберговского антиферромагнитного обмена. При $T = 200 \,\mathrm{K}$ значение $\xi \simeq 2000 \,a.$

Экспериментально 2D гейзенберговские антиферромагнитные спиновые флуктуации наблюдались при неупругом рассеянии нейтронов в La₂CuO₄ только при температурах $T \ge T_N$ [9]. Для тетрагональных кристаллов R₂CuO₄ аналогичных исследований не проводилось. Отметим, что в то время как свойства слоев CuO₂ для всех упомянутых выше кристаллов подобны, характер межслоевых и анизотропных взаимодействий кристаллов La₂CuO₄ и R₂CuO₄ существенно различен и ожидать полной аналогии в свойствах этих кристаллов не следует. Действительно, в кристаллах R₂CuO₄ в отличие от La_2CuO_4 расположение ионов Cu^{2+} в соседних слоях CuO₂ таково, что в приближении среднего поля величины межслоевых молекулярных полей равны нулю. При этом связь между слоями обеспечивается флуктуационными взаимодействиями. В R2CuO4 с магнитными редкоземельными ионами (РЗИ) имеются также и 3d-4f взаимодействия.

Характер межслоевых и анизотропных взаимодействий, а также 3D антиферромагнитного упорядочения для тетрагональных кристаллов R₂CuO₄ теоретически изучался в работах [10-12]. В [12] рассматривалось псевдодипольное взаимодействие в Си-подсистеме, позволяющее объяснить неколлинеарное 3D антиферромагнитное упорядочение, которое фиксируется в нейтронных экспериментах. В работах [10,11] рассматривались механизмы анизотропии тетрагональных кристаллов R₂CuO₄, обусловленные как взаимодействиями внутри Си-подсистемы, так и взаимодействием магнитных редкоземельных ионов R³⁺ с ионами Cu²⁺. Изучалась также и роль анизотропных взаимодействий при формировании квази-2D состояний. Однако во всех этих работах для изучаемых кристаллов рассматривалось однородное 3D антиферромагнитное упорядочение при температурах $T \leq T_N$.

Если же принять, что в тетрагональных кристаллах R_2 CuO₄ имеется квази-2D RF состояние и при $T < T_N$ имеются 2D спиновые флуктуации с большими корреляционными радиусами $\xi \gg a$, то при рассмотрении

межслоевых и анизотропных взаимодействий необходимо учитывать также и эффективные взаимодействия через эти флуктуации. Это — эффективное обменное взаимодействие $\mathbb{R}^{3+}-\mathbb{R}^{3+}$ через 2D антиферромагнитные спиновые флуктуации (f-d-f обмен) и орбитальорбитальное взаимодействие ионов \mathbb{Cu}^{2+} через эти же флуктуации. Задача данной работы — изучение влияния таких эффективных взаимодействий на анизотропию кристаллов $\mathbb{R}_2\mathbb{CuO}_4$.

Ранее анизотропные 3d-4f взаимодействия и f-d-fобмен изучались в редкоземельных ортоферритах, ортохромитах и гранатах [13,14]. Было показано, что анизотропия 3d подсистемы в большой степени определяется состоянием намагниченных 4f ионов. При этом непосредственное 4*f*-4*f* обменное взаимодействие обычно приводит к упорядочению 4f ионов лишь при температурах $T \le 10 \, \text{K}$. Однако в редкоземельных магнетиках, содержащих и 3d ионы, имеется также поляризационный (флуктуационный) f-d-f обмен (см. [14–16]), при учете которого может возникать упорядочение 4f ионов с более высокими температурами, чем от непосредственного 4f-4f обмена. В результате, при температурах $T \gg 10 \,\mathrm{K}$ возможно появление внутреннего эффективного поля анизотропии для 3d-подсистемы, обусловленного воздействием упорядоченной за счет f - d - f взаимодействия подсистемы РЗИ.

Для кристаллов R_2CuO_4 с магнитными РЗИ в работах [17,18] при температурах $T \ge 10$ К наблюдались максимумы намагниченности РЗИ (например, для Gd_2CuO_4 $T_{max} \simeq 20$ К и имеется мощный хвост намагниченности вплоть до 200 К, см. рисунок). Авторы предполагали, что наблюдаемые ими особенности обусловлены обменными взаимодействиями R-Cu и Cu-Cu. Полагаем, что обнаруженные максимумы могут соответствовать температурам упорядочения 4f ионов за счет f-d-f обмена.

Согласно [6], для существования орбиталь-орбитального взаимодействия через 2D гейзенберговские антиферромагнитные спиновые флуктуации в тетрагональных кристаллах R₂CuO₄ наобходимо наличие вырожденного основного орбитального состояния ионов Cu²⁺ (тетрагональный дублет d_{xz} , d_{yz}) либо подмешивания возбужденного тетрагонального дублета к основному синглету.

Будет предполагать такое основное орбитальное состояние для тетрагональных кристаллов R₂CuO₄. Заметим, что основное орбитальное состояние в виде синглета $d_{x^2-y^2}$ с подмешиванием тетрагонального дублета d_{xz} , d_{yz} предполагалось в работе [10] для объяснения наблюдаемой анизотропии в плоскости *ab* в тетрагональных кристаллах R₂CuO₄. Основное орбитальное состояние для Eu₂CuO₄ в виде тетрагонального дублета d_{xz} , d_{yz} (либо достаточно сильного подмешивания такого дублета к синглету) следует из экспериментальных результатов работы [19].

Далее будет показано, что оба механизма анизотропии, обусловленные эффективными взаимодействиями РЗИ или орбитальных моментов ионов Cu^{2+} через 2D антиферромагнитные спиновые флуктуации, приводят к случайной анизотропии достаточно большой величины.

Далее в разделе 1 рассматривается эффективный f-d-f обмен и случайная анизотропия, обусловленная этим обменом; в разделе 2 учитывается спин-орбитальное взаимодействие, рассматривается эффективное орбиталь-орбитальное взаимодействие ионов Cu²⁺ через 2D спиновые флуктуации и случайная анизотропия, обусловленная этим взаимодействием; в разделе 3 проводится анализ механизмов случайной анизотропии для кристаллов R₂CuO₄ (R = Eu, Pr, Gd).

Анизотропия, обусловленная *f*-*d*-*f* обменным взаимодействием в кристаллах R₂CuO₄

Рассмотрим гамильтониан

$$\mathcal{H} = \sum J_{ij}^{d-d} S_i S_j + \sum_{\alpha\beta,ik} J_{\alpha,i;\beta,k}^{d-f} S_i^{\alpha} I_k^{\beta}.$$
 (2)

Здесь J_{ij}^{d-d} — обменная константа 2D гейзенберговского антиферромагнитного обмена между ближайшими соседними ионами Cu²⁺ в узлах *i* и *j* в слоях CuO₂; $J_{\alpha,i;\beta,k}^{d-f}$ — компонента тензора d-f обменного взаимодействия между проекциями спинов ионов Cu²⁺ в *i*, *j* узлах решетки (S_i^{α}) и моментов РЗИ (I_k^{β}) в *k*, *l* узлах решетки, ближайших сверху и снизу к слою CuO₂. В нашем случае величины $J_{ij}^{d-d} \gg J_{\alpha,i;\beta,k}^{d-f}$. Запишем в рамках теории возмущений, до второго порядка включительно, эффективный гамильтониан для 4*f* подсистемы

$$\mathcal{H}_{eff}^{f} = \sum_{\alpha,i;\beta,k} J_{\alpha,i;\beta,k}^{d-f} \langle S_{i}^{\alpha} \rangle I_{k}^{\beta} - \sum_{\alpha,l;\beta,k} [J_{\alpha,k;\gamma,i}^{f-d} K_{\gamma,i;\eta,j}^{d-d} J_{\eta,j;\beta,l}^{d-f}] I_{k}^{\alpha} I_{l}^{\beta}.$$
(3)

Здесь $\langle S_i^{\alpha} \rangle$ — величина среднего по конфигурациям спина ионов Cu²⁺; $K_{\gamma,i\eta,j}^{d-d} = 1/J(\langle S_i^{\gamma} S_j^{\eta} \rangle - \langle S_i^{\gamma} \rangle \langle S_j^{\eta} \rangle)$ — корреляционная функция спиновых флуктуаций ионов Cu²⁺ в слоях CuO₂. Индексы $\alpha, \beta, \gamma, \eta$ характеризуют *x*, *y*, *z*-проекции соответствующих моментов.

Первая сумма в (3) описывает подмагничивание магнитных моментов РЗИ средним полем $H_{MF}^d = J_{\alpha,i;\beta,k}^{d-f} \cdot \langle S_i^{\alpha} \rangle$. Только в том случае, когда в кристалле имеется 3D однородный дальний магнитный порядок в Си-подсистеме, величины $\langle S_i^{\alpha} \rangle \neq 0$ и $H_{MF}^d \neq 0$ при $T \leq T_N$. Если в 3d подсистеме имеется RF-состояние, то эти величины равны нулю, и в гамильтониане (3) остается только второе слагаемое.

Вторая сумма в (3) описывает эффективное 4f-4f обменное взаимодействие через спиновые флуктуации с большими корреляционными радиусами (1) в слоях CuO₂ — f-d-f-обмен. Учитывая гейзенберговский характер этих спиновых флуктуаций, а также обычное для редкоземельных магнетиков соотношение между величинами 3d-4f обменного взаимодействия

 $(J^{d-f}_{\alpha,i;\beta,k} \ll J^{d-f}_{\alpha,i;\alpha,k})$, запишем f-d-f обменное взаимодействие в виде [14].

$$\mathcal{H}_{eff}^{f} = -\sum_{\alpha;kl} (J_{\alpha,i;\alpha,k}^{d-f})^{2} K_{\alpha,i;\alpha,j}^{d-d} I_{k}^{\alpha} I_{l}^{\alpha} = \sum_{\alpha;kl} A_{\alpha,k;\alpha,l}^{f-f} I_{k}^{\alpha} I_{l}^{\alpha}.$$
 (4)

В результате РЗИ могут упорядочиваться за счет f - d - f обмена со своей температурой упорядочения. При этом возникает средний момент $\langle I_k^{\alpha} \rangle \neq 0$ и эффективное поле анизотропии, действующее на ионы Cu²⁺ со стороны 4*f* подсистемы

$$H^{A}_{\alpha,i} = J^{d-f}_{\alpha,i;\alpha,k} \langle I^{\alpha}_{k} \rangle.$$
⁽⁵⁾

Поскольку суммирование в (4) ведется по всем узлам решетки, взаимодействие $A_{\alpha,k;\alpha,l}^{f-f}$ является дальнодействующим (корреляционный радиус $\xi \gg a$). При этом взаимодействие $A_{\alpha,k;\alpha,l}^{f-f}$ усиливается за счет дальнодействия, и, в результате, температура упорядочения РЗИ за счет f - d - f обмена может существенно превышать температуру упорядочения за счет непосредственного f-f обмена. Взаимодействие $A^{f-f}_{\alpha,k;\alpha,l}$ изменяет знак на каждой постоянной решетки (из-за антиферромагнитного характера спиновых корреляций). Возникает полная аналогия с ситуацией, рассмотренной в [6], и молекулярное поле $H_{MF}^{f} = A_{\alpha,k;\alpha,l}^{f-f} \cdot \langle I_{k}^{\alpha} \rangle$ является случайным. При этом упорядочение 4f ионов за счет f-d-f обмена может быть либо типа RF, либо стекольным, и фазовый переход, связанный с таким упорядочением, будет размыт. Ясно, что и анизотропия, обусловленная полем $H^{A}_{\alpha,i}$, также является случайной.

Если же в 3d подсистеме имеется 3D однородный дальний антиферромагнитный порядок, то состояние РЗИ будет определяться как молекулярным полем подмагничивания H_{MF}^d , так и f-d-f обменным взаимодействием. В этом случае f - d - f обмен при $T < T_N$ реализуется через спиновые волны в 3d подсистеме. При этом коррелятор $K_{\alpha,i;\alpha,j}^{d-d} = -1/J$, а величина $A^{f-f}_{lpha,k;lpha,l}=(J^{d-f}_{lpha,i;lpha,k})^2/J$. Упорядочение 4f ионов за счет f - d - f обмена оказывается ферромагнитным. Заметим однако, что подмагничивающее поле $H^d_{MF} \propto \langle S^{\alpha}_i \rangle$ приводит к антиферромагнитным корреляциям моментов РЗИ. В результате, если вклад f - d - f обмена не пренебрежимо мал по сравнению с полем подмагничивания, то и в случае однородно упорядоченной 3d подсистемы имеется основа для возникновения RF состояния для РЗИ и, следовательно, случайной анизотропии для 3d подсистемы.

Таким образом, учет f-d-f эффективного обменного взаимодействия как для случая кристаллов R₂CuO₄ с однородным 3D антиферромагнитным упорядочением (Gd₂CuO₄) при $T < T_N$, так и с квази-2D RF состоянием (например, Eu(Pr)₂CuO₄) может приводить к случайной анизотропии в 3d подсистеме, обусловленной воздействием 4f ионов. В этом случае имеется качественное различие механизмов анизотропии, рассмотренных в работе [11] и в данной работе.

Анизотропия, обусловленная орбиталь-орбитальным взаимодействием через 2D гейзенберговские антиферромагнитные спиновые флуктуации

Запишем гамильтониан взаимодействий для кристаллов R_2CuO_4 , в котором к гамильтониану (2) добавим спин-орбитальное взаимодействие для ионов Cu^{2+}

$$H = \mathcal{H} + \sum_{i} \lambda S_{i}^{z} \sigma_{i}^{z}.$$
 (6)

Здесь \mathcal{H} — гамильтониан (2), λ — константа спинорбитального взаимодействия для ионов Cu²⁺; σ_i^z — проекция орбитального момента иона Cu²⁺(L) на основной тетрагональный дублет (т.е. предполагается основное орбитальное состояние иона Cu²⁺ в виде тетрагонального дублета d_{xz} , d_{yz} либо подмешивание такого дублета к основному орбитальному синглету).

В нашем случае $J_{ij}^{d-d} \gg J_{\alpha,i;\beta,k}^{d-f}$ и $\lambda_{ij}^{d-d} > \lambda$. Полагаем, что величины J^{d-f} и λ одного порядка. Для выяснения роли анизотропного Cu–R и спин-орбитального взаимодействий проанализируем их отдельно, учитывая каждое из них наряду с основным 2D гейзенберговским антиферромагнитным обменом между спинами ионов Cu²⁺. Взаимодействие Cu–R рассмотрено в предыдущем разделе. Орбиталь-орбитальное взаимодействие через 2D гейзенберговские антиферромагнитные спиновые флуктуации проанализировано в работах [6,7] для кристалла Eu₂CuO₄. По существу это взаимодействие является аналогом f-d-f обмена, но вместо момента РЗИ рассматриваются орбитальные моменты ионов Cu²⁺ в слоях CuO₂.

Эффективный гамильтониан, описывающий орбитальную подсистему, имеет вид (см. [6])

$$\mathcal{H}_{eff}^{\sigma} = \sum_{i} \lambda \langle S_{i}^{z} \rangle \sigma_{i}^{z} - \sum_{ij} (\lambda)^{2} K_{ij}^{zz} \sigma_{i}^{z} \sigma_{j}^{z}.$$
(7)

Здесь K_{ij}^{zz} — корреляционная функция 2D спиновых флуктуаций в слоях CuO₂. Для интересующего нас случая (квази-2D RF состояние) в (7) остается только второе слагаемое, описывающее эффективное орбитальорбитальное взаимодействие через 2D антиферромагнитные спиновые флуктуации — $V_{ij}^{zz} = (\lambda)^2 K_{ij}^{zz}$. Как указано в [6], взаимодействие V_{ij}^{zz} является дальнодействующим и знакопеременным на каждой постоянной решетки и приводит к образованию орбитального стекла.

Таким образом, учет V_{ij}^{zz} взаимодействия в тетрагональных кристаллах R_2CuO_4 приводит к случайной одноосной анизотропии

$$H_{A,i}^z = \lambda \langle \sigma_i^z \rangle, \tag{8}$$

где величина $\langle \sigma_i^z \rangle$ — замороженный локальный орбитальный момент.

Температурные зависимости статической магнитной восприимчивости для: Gd₂CuO₄ — χ_{ab} (линия Gd); Eu₂CuO₄ — χ_c (линия Eu); Pr₂CuO₄ — χ_{ab} (линия Pr).

Анализ механизмов случайной анизотропии в кристаллах R₂CuO₄

Рассмотрение механизмов анизотропии, проведенное в разделах 2 и 3, позволяет сделать следующие заключения.

1) Учет f-d-f обменного взаимодействия может приводить к появлению случайной анизотропии как в кристаллах R₂CuO₄ с однородным квази-2D дальним магнитным порядком при $T < T_N$, так и в кристаллах с квази-2D RF состоянием. При этом необходимо, чтобы имелся магнитный РЗИ и величина f-d-f обменного взаимодействия не была пренебрежимо мала в сравнении с взаимодействиями, приводящими к однородной анизотропии. f-d-f обменное взаимодействие может проявляться как в тетрагональных кристаллах, так и в кристалах с ромбическими искажениями.

2) Учет эффективного орбиталь-орбитального взаимодействия через 2D спиновые флуктуации приводит к случайной одноосной анизотропии вдоль оси c в тетрагональных кристаллах R_2CuO_4 , в которых имеется основное орбитальное состояние в виде тетрагонального дублета (либо достаточная степень подмешивания возбужденного тетрагонального дублета к основному орбитальному синглету).

Оценим теперь величину случайной анизотропии, исходя из экспериментальных данных для кристаллов R_2CuO_4 (R = Eu, Pr, Gd). Для оценки полей анизотропии $H^A_{\alpha,i}$ (5) обратимся к температурным зависимостям статической магнитной воспроиимчивости для этих кристаллов. На рисунке приведены восприимчивости для тех направлений кристалла, для которых они максимальны [17,20,21]. Отметим, что величины восприимчивостей всех трех кристаллов значительно превосходят восприимчивость $\chi_{\perp} \sim 10^{-3} - 10^{-4}$ emu/mole кристалла

La₂CuO₄ [22], единственной магнитной системой которого являются ионы Cu²⁺ в слоях CuO₂. Полагая, что свойства слоев CuO₂ для всех этих кристаллов подобны можно считать, что в случае кристаллов с магнитными РЗИ измеряется практически восприимчивость подсистемы РЗИ. При этом величина $\langle I_k^{\alpha} \rangle \propto \chi$. Будем предполагать близкими константы d-f обменных взаимодействий для R₂CuO₄ с разными РЗИ по аналогии с ситуацией в других магнитных кристаллах с РЗИ [13,14]. Тогда и величины эффективных полей анизотропии $H^A_{\alpha,i} \propto \chi$. Из рисунка видно, что имеет место соотношение величин $\chi^{Gd}_{ab} \gg \chi^{Pr}_{ab} \sim \chi^{Eu}_{c}$ и, следовательно, соотношение величин полей анизотропии — $H^A_{\alpha,i}(\text{Gd}) \gg H^A_{\alpha,i}(\text{Eu}) \simeq H^A_{\alpha,i}(\text{Pr}).$

Оценка величины поля анизотропии $H_{A,i}^z$ (8) для Eu₂CuO₄, обусловленного орбиталь-орбитальным взаимодействием ионов Cu²⁺ через спиновые флуктуации в слоях, была приведена в работах [4,5] — эффективная температура анизотропии $T_a \simeq 250$ К. Будем полагать, что для всех тетрагональных кристаллов R₂CuO₄, имеющих одинаковое ближайшее окружение ионов Cu²⁺ в кристаллической решетке и соответственно однотипное основное орбитальное состояние, величины орбитальорбитального взаимодействия через спиновые флуктуации близки. Действительно, исследования CBЧ спиновой динамики кристалла Pr₂CuO₄ [5] показали, что ситуация подобна той, которая наблюдалась в Eu₂CuO₄, и величины полей одноосной анизотропии $H_{A,i}^z$ в этих кристаллах близки.

Случайное поле анизотропии $H_{A,i}^z$ не зависит от температуры в области температур $T \ll 2\pi\rho_s \sim 1500$ К. В то же время поле анизотропии $H_{\alpha,i}^A$, обусловленное f-d-f обменом, существенно зависит от температуры, так как определяется средним моментом РЗИ и может играть заметную роль лишь при сравнительно низких температурах. В результате в кристаллах R_2CuO_4 при изменении температуры возможны фазовые переходы, обусловленные переключением механизма преобладающей анизотропии. При таких фазовых переходах возможно изменение как магнитных, так и структурных свойств кристаллов. Действительно, орбиталь-орбитальное взаимодействие через спиновые флуктуации приводит также и к структурным искажениям решетки (см [6,7]).

Будем полагать, что структурный и магнитный фазовые переходы в Eu₂CuO₄ при температуре $T \sim 150$ К являются такими фазовыми переходами, при которых происходит переключение механизма анизотропии: при $T \geq 150$ К преобладает поле анизотропии $H_{A,i}^z$, а при T < 150 К — $H_{\alpha,i}^A$. При $T \simeq 150$ К величины этих полей сравниваются ($H_{\alpha,i}^A(T = 150$ К) $\simeq H_{A,i}^z$).

В работах [4,5] в кристаллах R_2CuO_4 (R = Eu, Pr, Gd) было обнаружено изменение знака действительной части динамической магнитной восприимчивости вдоль оси c (Re(χ_c)), которое наблюдалось при температурах $T \simeq T^* \ (T^* = 90 \,\mathrm{K}$ для $\mathrm{R} = \mathrm{Pr}; \ T^* = 120 \,\mathrm{K}$ для $\mathrm{R} = \mathrm{Eu};$ $T^* = 290 \,\mathrm{K}$ для R = Gd). Такое изменение знака $Re(\chi_c)$ обусловлено изменением характера магнитной анизотропии при соответствующих температурах [4,5]. Если считать, что изменение анизотропии обусловлено описанным выше процессом переключения от эффективного поля $H^{A}_{\alpha,i}$ (при $T \leq T^{*}$) к $H^{z}_{A,i}$ (при $T \geq T^{*}$), то величины статистической магнитной восприимчивости при температурах $T = T^*$ для всех трех кристаллов должны быть близки. Обращаясь к рисунку, видим, что действительно величины статической восприимчивости $\chi_{ab}^{Gd}(T = 290 \,\mathrm{K}) \simeq \chi_{ab}^{Pr}(T = 90 \,\mathrm{K}) \simeq \chi_{c}^{Eu}(T = 120 \,\mathrm{K}).$

Итак, в работе показано, что в кристаллах R_2CuO_4 имеются механизмы случайной анизотропии, обусловленные f-d-f обменом и орбиталь-орбитальным взаимодействиями через спиновые возбуждения. Конкуренция между рассматриваемыми механизмами анизотропии может приводить к фазовым переходам, при которых изменяются характер магнитной анизотропии и локальных структурных искажений.

Работа поддержана Российским фондом фундаментальных исследований (грант № 97-02-18061).

Список литературы

- H. Muller-Buschbaum, W. Wollschlager. Z. Anorg. Allg. Chem. 414, 76 (1975).
- [2] M. Braden, W. Paulus, A. Cousson, P. Vigoureux, G. Heger, A. Goukassov, P. Bouges, D. Petitgrand. Europhys. Lett. 25, 625 (1994).
- [3] T. Chattopadhyay, J.W. Lynn, N. Rosov, T.E. Grigereit, S.N. Barilo, D.I. Zhigunov. Phys. Rev. B49, 9944 (1994).
- [4] Е.И. Головенчиц, С.Л. Гинзбург, В.А. Санина, А.В. Бабинский. ЖЭТФ 107, 1641 (1995).
- [5] Е.И. Головенчиц, В.А. Санина. ФТТ 41, 8, 0000 (1999).
- [6] А.В. Бабинский, С.Л. Гинзбург, Е.И. Головенчиц, В.А. Санина. Письма в ЖЭТФ 57, 5, 289 (1993).

- [7] Е.И. Головенчиц, В.А. Санина, А.В. Бабинский. ЖЭТФ 110, 714 (1996).
- [8] S. Chakravarty, B. Halperin, D. Nelson. Phys. Rev. B39, 2344, (1989).
- [9] Y. Endoh, K. Yamada, R.J. Birgeneau, D.R. Gabbe, H.P. Jenssen, M.A. Kastner, C.J. Peters, P.J. Picone, T.R. Thurston, J.M. Tranguada, G. Shirane, Y. Hidaka, M. Oda, Y. Enomova, M. Suzuki, T. Murakami. Phys. Rev. B37, 7443 (1988); K. Yamada, K. Kakurai, Y. Endoh, T.R. Thurston, M.A. Kastner, R.J. Birgeneau, G. Shirane, Y. Hidaka, T. Murakami. ibid. B40, 4557 (1989).
- [10] T. Yildrim, A.B. Harris, A. Aharony, O. Entin-Wohlan. Phys. Rev. B52, 10289 (1995).
- [11] R. Sachidanandam, T. Yildirim, A.B. Harris, A. Aharony, O. Entin-Wohlan. Phys. Rev. B56, 260 (1997).
- [12] D. Petitgrand, S.V. Maleev, Ph. Bourges, A. Ivanov. Phys. Rev. B59, 2, 1079 (1999).
- [13] А.К. Звездин, В.М. Матвеев, А.А. Мухин, А.И. Попов. Редкоземельные ионы в магнитоупорядоченных кристаллах. Наука, М. (1985).
- [14] Е.И. Головенчиц, В.А. Санина. ФТТ 26, 1640 (1984).
- [15] Е.И. Головенчиц, Б.Д. Лайхтман, В.А. Санина. Письма в ЖЭТФ 31, 243 (1980).
- [16] Е.Ф. Шендер. ЖЭТФ 83, 326 (1982).
- [17] S.-W. Cheong, S.E. Brown, Z. Fisk, S.B. Oseroff, M. Tovar, D.C. Vier, S. Shultz. Phys. Rev. B39, 6660 (1989).
- [18] S.B. Oseroff, D. Rao, F. Wright, M. Tovar, D.C. Vier, S. Shultz, J.D. Thompson, Z. Fisk, S.-W. Cheong. Sol. Stat. Commun. 70, 1159 (1989).
- [19] Е.И. Головенчиц, В.А. Санина, А.А. Левин, Ю.И. Смолин, Ю.Ф. Шепелев. ФТТ **39**, 1600 (1997).
- [20] А.В. Бабинский, Е.И. Головенчиц, Н.В. Морозов, В.А. Санина, Л.М. Сапожникова. ФТТ 34, 60 (1992).
- [21] P. Allenspach, S.-W. Cheong, A. Dommann, P. Fisher, Z. Fisk, A. Furrer, H.R. Ott, B. Rupp. Z. Phys. B — Condensed Matter 77, 185 (1989).
- [22] T. Thio, T.R. Thurston, N.W. Preyer, P.J. Picone, M.A. Kastner, H.P. Jenssen, D.R. Gabbe, C.Y. Chen, R.J. Birgeneau, A. Aharony. Phys. Rev. B38, 905 (1988); T. Thio, C.Y. Chen, B.S. Freer, D.R. Gabbe, H.P. Jenssen, M.A. Kastner, P.J. Picone, N.W. Preyer, R.J. Birgeneau. Ibid. 41, 231 (1990).