Особенности транспортных и магнитных свойств соединений YbNi₄In и YbNiIn₄ с валентно-неустойчивым Yb

© М.Д. Котерлин, Б.С. Морохивский, И.Д. Щерба, Я.М. Калычак

Львовский государственный университет, 290005 Львов, Украина E-mail: koterlyn@wups.lviv.ua

(Поступила в Редакцию 16 марта 1999 г.)

Приведены результаты измерений электросопротивления, термоэдс и магнитной восприимчивости соединений YbNi₄In и YbNiI₄ с валентно-неустойчивым Yb в интервале температур 4.2-300 K. Идентификация валентного состояния Yb осуществлялась с помощью измерений рентгеновских $L_{\rm III}$ -спектров поглощения при T = 300 K. Показано, что YbNi₄In представляет собой магнитную решетку Кондо с проявлением эффектов кристаллического поля. При этом наиболее предпочтительной является схема расщепления 4f-уровня Yb³⁺ с образованием дублетов в основном и первом возбужденном состояниях. В случае YbNiIn₄ образуется валентно-неустойчивое состояние Yb, которое не приводит к заметным дополнительным вкладам в коэффициенты переноса.

В проблеме физики систем с тяжелыми фермионами (СТФ) и решеток Кондо особо важное место занимают вопросы основного состояния системы, относительной роли различных взаимодействий в его формировании. В связи с этим в последние годы наблюдается постоянный рост интереса к исследованию тернарных соединений типа RM_nX_m (R = Ce или Yb, M — переходной элемент, X — *р*-элемент III–V групп), которые обнаруживают большое разнообразие свойств основного состояния. В соединениях такого типа были обнаружены сверхпроводимость тяжелых фермионов, зонный магнетизм, а также особый класс СТФ с неферми-жикостным поведением основных свойств (Кондо-изоляторы, СТФ с низкой плотностью носителей заряда и др.) [1]. Кроме того, большое разнообразие кристаллических структур и наличие магнетоактивного М-элемента позволяет рассматривать ряд соединений типа *RM_nX_m* в качестве удобных модельных объектов для изучения взаимодействий между кондовскими и магнитными подрешетками на микроскопическом уровне [2–4].

В настоящем сообщении приведены результаты исследований транспортных и магнитных свойств сравнительно новых соединений YbNi4In и YbNiIn4 с валентнонеустойчивым Yb. По предварительным данным [5,6] в YbNi₄In (кубическая структура типа MgSnCu₄, пространственная группа $F4\bar{3}m$ [7]) Уb находится в магнитном состоянии с дополнительным проявлением эффектов Кондо. В кристаллическом поле (КП) кубической симметрии вырождение состояния ${}^{2}F_{7/2}$ свободного иона Yb³⁺ в YbNi₄In частично снимается, и основное состояние может быть дублетным или квадруплетным. Полученные недавно результаты измерений неупругого рассеяния нейтронов [5], термодинамических и магнитных свойств [6] YbNi₄In имеют существенно противоречивый характер, когда речь идет об основном состоянии Yb. В связи с этим представляет интерес более детально проследить за особенностями поведения транспортных свойств YbNi₄In, которые являются наиболее чувствительными к кондовскому состоянию Үb. Соединение YbNiIn₄ (ромбическая структура YNiAl₄, пространственная группа *Стст* [8]) является новым представителем большого ряда соединений типа YbMX₄, для которых характерно образование валентно-неустойчивых состояний Yb с наибольшим смешиванием конфигураций $4f^{13}$ и $4f^{14}$ [9,10].

Соединения получали прямым сплавлением в электродуговой печи в атмосфере очищенного аргона компонентов никеля (99.91 % Ni), индия (99.99 % In) и редкоземельного металла (чистотой не менее 99.85% основного компонента). Гомогенизирующий отжиг проводился при 900 К на протяжении 150 h. Определенные по дифрактограммам (дифрактометр ДРОН-3.0, CuK_{α} -излучение) периоды решеток находились в хорошем соответствии с приведенными в [7,8]. Стехиометрический состав полученных образцов контролировали дополнительно с помощью рентгеновского микроанализатора САМЕВАХ. Обнаружено, что имеет место некоторое отклонение состава от стехиометрического, обусловленное взаимозамещением компонент Ni и Yb. В итоге уточненные составы соответствовали химическим формулам $Yb_{1-\delta}Ni_{4+\delta}In$ и $Yb_{1+\delta}Ni_{1-\delta}In_4 \ c \ \delta \approx 0.1.$

Подготовка образцов и методика измерений аналогичны описанным в [11]. Идентификация валентного состояния Yb проводилась на основании измерений рентгеновских *L*_{III}-спектров поглощения при температуре 300 К по методике, описанной в [12]. Значения термоэдс измеряли относительно Cu.

На рис. 1 приведены экспериментальные Yb $L_{\rm III}$ -спектры поглощения и их разложение на составляющие (линия гауссовой формы, описывающая атомный 2*p*-5*d*-переход и агсtg-подобная линия, описывающая край поглощения зонными состояниями), соответствующие условным ионным конфигурациям Yb³⁺ (4*f*¹³) при энергии $E = 8947 \,\text{eV}$ и Yb²⁺ (4*f*¹⁴) при $E = 8940 \,\text{eV}$. Определенная по соотношению интенсивностей основных линий заселенность *f*-оболочки составляла ~ 0.0 ± 0.05 и 0.4 ± 0.02 дырки для YbNi4In и YbNiIn₄ соответственно. Относительно большая ошиб-

Рис. 1. Рентгеновские L_{III} -спектры поглощения Yb в YbNi4In (1) и YbNiIn₄ (2) и их разложение на составляющие (пунктирные кривые).

ка определения заселенности в случае YbNi₄In обусловлена появлением дополнительной линии с максимумом на ~ 5 eV выше основной линии поглощения Yb с конфигурацией $4f^{13}$. Появление дополнительной линии является, по-видимому, характерной чертой Yb L_{III} -спектров для соединений типа YbM₄X с трехвалентным Yb и может быть связано с особенностями структуры плотности 5*d*-состояний в энергетическом спектре соединений выше уровня Ферми E_F [13].

На рис. 2,3 приведены температурные зависимости удельного сопротивления ρ и термоэдс *S* для *R*Ni₄In (*R*=Yb, Nd) и YbNiIn₄. Зависимость $\rho(T)$ для YbNi4In обнаруживает существенное отклонение от линейности при *T* < 250 K и характерный наплыв при *T* ~ 30 K. В области низких температур (*T* < 15 K) наблюдается участок с $\rho \sim T$ без выхода на насыщение. Поведение $\rho(T)$ хорошо соответствует приведенному в [6] для монокристаллического образца YbNi4In.

Для оценки вклада валентно-неустойчивого Yb в общее удельное сопротивление ρ необходимо выделить его фононную часть. Для этой цели было использовано изоструктурное соединение NdNi4In [7]. Зависимость $\rho(T)$ для NdNi4In качественно соответствует обычному закону Блоха–Грюнайзена. Отсутствие четко выраженного участка $\rho \approx \text{const}$ при $T \rightarrow 0$ возможно обусловлено проявлением рассеяния носителей заряда на магнитных ионах Nd³⁺. Такое дополнительное рассеяние не является препятствием для качественной оценки вклада в общее ρ рассеяние носителей заряда валентно-неустойчивым Yb

в YbNi₄In (ρ_m). Характер поведения $\rho_m(T)$ можно оценить из соотношения $\rho_m(T) \approx \rho(\text{YbNi}_4\text{In}) - \rho(\text{NdNi}_4\text{In}).$ Как видно, ρ_m обнаруживает два линейных участка в логарифмической шкале температур (вставка на рис. 2), что характерно для кондовского механизма рассеяния носителей заряда на примесных ионах Yb3+ с проявлением эффектов расщепления 4f-уровня КП [14]. В соответствии с теорией [14] изменение наклона линейных участков связано с изменением по мере роста Т заселенности подуровней, образованных вследствие частичного снятия вырождения основного состояния иона Yb³⁺ под действием КП. В граничных случаях для $T \ll \Delta$ и $T \gg \Delta$ (Δ — общее расщепление КП), отношение наклона линейного участка в низкотемпературной области к наклону в высокотемпературной области определяется соотношением $\nu(\alpha_l^2-1)/(\alpha_h^2-1)$, где α_l и α_h обозначают вырождения при низких и высоких температурах соответственно. В КП кубической симметрии 4f-уровень иона Yb³⁺ расщепляется на 3 подуровня с вырождением $\alpha = 2(\Gamma_6), 2(\Gamma_7)$ и $4(\Gamma_8)$. Рассматривая все возможные переходы в таком КП, получим следующие значения *v*: 0.20 $(\alpha_l = 2, \alpha_h = 4), 0.086 (\alpha_l = 2, \alpha_h = 6),$ 0.048 ($\alpha_l = 2, \alpha_h = 8$), 0.43 ($\alpha_l = 4, \alpha_h = 6$) и 0.24 ($\alpha_l = 4, \alpha = 8$). Наблюдаемое в нашем случае экспериментальное значение $\nu = 0.18$ является наиболее близким к значению, получаемому в схеме расщепления 4*f*-уровня с дублетными основным и первым возбужденным состояниями ($\alpha_l = 2, \alpha_h = 4$). Вследствие

Рис. 2. Температурные зависимости электросопротивления RNi_4In , R = Yb(I), Nd(2) и YbNiIn₄(3). На вставке приведена зависимость магнитного вклада в общее электросопротивление валентно-неустойчивого Yb в логарифмической шкале температур.

Рис. 3. Температурные зависимости термоэдс RNi_4In , R = Yb (1), Nd (2) и YbNiIn₄ (3).

этого можно предполагать, что два линейных участка $\rho_m(\ln T)$ связаны с кондовским рассеянием носителей заряда преимущественно на дублете при температурах $T < 60 \,\mathrm{K}$ и четырехкратно вырожденном 4f-уровне при $T > 60 \,\mathrm{K}$.

Проявление эффектов КП на кондовском механизме рассеяния подтверждается также измерениями термоэдс. Сравнение зависимостей S(T) YbNi₄In и его аналога NdNi₄In показывает, что кондовские центры вносят характерный отрицательный вклад в общее *S* с минимумом $S_{\min} = 12 \,\mu$ V/К при температурах $T_{S_{\min}} \approx T_{\rho_m,\max} \sim \Delta (\Gamma_6 \rightarrow \Gamma_7)$. Такое поведение S(T)($S \sim T$ при $T < T_{S_{\min}}$ и $S \sim T^{-1}$ при $T > T_{S_{\min}}$) качественно хорошо описывается в примесной модели Кондо с учетом КП [15]. Предполагаемая схема расщепления 4f-уровня иона Yb³⁺ в YbNi₄In удовлетворительно соответствует данным измерений удельной теплоемкости и намагниченности [6] и не согласуется с измерениями неупругого рассеяния нейтронов [5].

Несколько неожиданными оказались результаты измерений ρ и *S* соединения YbNiIn₄ (рис. 2, 3). Зависимость $\rho(T)$ хорошо описывается законом Блоха–Грюнайзена при значении температуры Дебая $\theta_D = 140$ К и остаточном сопротивлении $\rho_0 = 0.3 \mu \Omega \cdot \text{сm}$. Как видно, для YbNiIn₄ характерным является отсутствие каких-либо дополнительных вкладов в ρ и *S*, связанных с наличием в кристалле состояний смешанной валентности Yb, и наличие необычно низкого для такого типа соединений остаточного сопротивления.

На рис. 4 приведены результаты измерений температурных зависимостей χ для YbNi₄In и YbNiIn₄. Из графического представления данных в виде зависимости χ^{-1} от *T* следует, что для YbNi₄In поведение магнитной восприимчивости соответствует закону Кюри–Вейсса в широком интервале температур. Отклонение зависимости $\chi^{-1}(T)$ от линейной наблюдается только при

T < 50 K и связано, по-видимому, с расщеплением 4f-уровня Yb³⁺ КП и возникновением магнитного перехода при $T_C = 3 \, \mathrm{K}$ [6]. Оценки значений эффективного локализованного магнитного момента и парамагнитной температуры Кюри θ_P из высокотемпературного участка кривой $\chi^{-1}(T)$ дают $\mu_{\text{eff}} = 4.6 \,\mu_B$ и $\theta_P = -18 \,\text{K}.$ Несколько завышенные значения μ_{eff} и θ_P по сравнению с полученными в [6] указывают на возможную чувствительность χ к атомным замещениям Yb \leftrightarrow Ni, обнаруженным в YbNi₄In. Отрицательная парамагнитная температура может служить качественной характеристикой энергии кондовского взаимодействия "примесного" f-центра с электронами зоны проводимости $(T_K \approx |\theta_P|/3$ [16]). При температурах T > 60 К, когда *f*-уровень можно считать частично вырожденным $(\alpha_h = 4)$, оценка температуры Кондо T_K для YbNi₄In дает величину $\sim 6 \, \mathrm{K}$.

Для соединения YbNiIn₄ зависимость $\chi^{-1}(T)$ имеет более сложный характер, что напоминает случай обменно-усиленного паулиевского парамагнетика при наличии парамагнитной примеси. Учитывая возможность проявления парамагнетизма примесных ионов Yb³⁺ ($\mu_{\rm eff} = 4.54 \,\mu_B, \,\theta_P = 0$) и образования примесной фазы Yb₂O₃ ($\mu_{\rm eff} = 4.54 \,\mu_B, \,\theta_P = 45\pm15 \,\mathrm{K}$ [17]) при получении такого типа соединений методом дуговой плавки, $\chi(T)$ для YbNiIn₄ аппроксимировали формулой

$$\chi(T) = C_1/T + C_2/(T + \theta_P) + \chi_P(T),$$

 $\chi_P(T) = \chi_P(0) \left[1 + a(T/T_{sf})^2\right].$

Здесь первое и второе слагаемые описывают парамагнетизм примесей Yb^{3+} и Yb_2O_3 соответственно; третье слагаемое описывает ферми-жидкостное поведение составляющей χ , обусловленное валентно нестабильным Yb [18]. Наименьшую ошибку

Рис. 4. Температурные зависимости величины обратной магнитной восприимчивости YbNi₄In (1) и YbNiIn₄ (2). На вставке приведена паулиевская составляющая магнитной восприимчивости YbNiIn₄.

(< 2%)аппроксимации обеспечивают значения параметров $C_1 = 1.1 \cdot 10^{-5} \,\mathrm{cm}^{-3} \,\mathrm{g}^{-1} \,\mathrm{K}^{-1}$, $C_2 =$ $1.2 \cdot 10^{-4} \,\mathrm{cm}^{-3} \,\mathrm{g}^{-1} \,\mathrm{K}^{-1}, \quad \theta_P =$ = 69.6 K, $\chi_P(0) = 6.4 \cdot 10^{-6} \,\mathrm{cm}^3 \,\mathrm{g}^{-1}, \ a = -1.0 \,\mathrm{\mu} \, T_{sf} = 1340 \,\mathrm{K}.$ Это соответствует наличию парамагнитной примеси $\sim 0.3\,\text{at.}\,\%$ в расчете на магнитный момент свободного иона Yb^3+, $\sim 3\,\%$ Yb_2O_3 и парамагнитной составляющей χ_P , спадающей с ростом *T* (вставка на рис. 4). Используя известную в парамагнонной модели [18] взаимосвязь температуры спиновых флуктуаций T_{sf} с парамагнитной восприимчивостью при T = 0 $(T_{sf} = C/2\chi_f(0),$ где C = 2.58 ети/mol·K — константа Кюри для свободного иона Yb³⁺), можно оценить вклад в $\chi_P(0)$ составляющей $\chi_f(0)$, связанной с валентно-неустойчивым Yb. Для T_{sf} = 1340 K получим $\chi_f(0) = 1.3 \cdot 10^{-6} \,\mathrm{cm}^3 \,\mathrm{g}^{-1}$. Из сравнения величин разности $\chi_P(0) - \chi_f(0) = 5.1 \cdot 10^{-6} \,\mathrm{cm}^3 \,\mathrm{g}^{-1}$ и $\chi_f(0)$ можно заключить, что плотность электронных состояний на уровне Ферми формируется преимущественно из d-состояний Ni, который в YbNiIn₄ является немагнитным.

Приведенные оценки T_{sf} и $\chi_f(0)$ хорошо коррелируют с аналогичным соотношением, полученным в примесной модели Андерсона в приближении 1/N_f-расширения $(\chi_f(0) = Cn_f/T_K \ [19]).$ Используя оценку $\chi_f(0)$ и измеренную нами заселенность $n_f \approx 0.4$, получим $T_K \approx 1070 \,\mathrm{K}$, сравнительно близкую к T_{sf} . Высокие значения T_{sf} (или T_K) качественно согласуются с отсутствием заметного вклада валентно-неустойчивого Yb в ρ и *S*, измеренные до температур $T \ll T_{sf}$. Согласно [19], в случае сильного смешивания флуктуирующих конфигураций Yb на уровне Ферми образуется пик плотности состояний шириной ~ kTsf, по форме близкий к симметричному лоренцевскому. Следовательно, заметных дополнительных вкладов в ρ и S можно ожидать при $T \sim T_{sf}$. Подобный режим валентной неустойчивости Yb реализуется, по-видимому, в Yb M_2 (M = Al, Cu) [20].

Из совокупности приведенных данных следует, что в соединениях типа YbNi_nIn_m реализуются два предельных состояния валентно-неустойчивого Ув — магнитный и немагнитный — с почти максимальным смешиванием флуктуирующих конфигураций. Особенность поведения YbNi₄In определяется наличием кондовских взаимодействий с характеристической температурой Т_K, сравнимой с температурой магнитного упорядочения Т_С (отсутствие ферми-жидкостного участка ρ и насыщения χ при $T \to 0$). Результаты измерений магнитной составляющей электросопротивления $\rho_m(\ln T)$ и термоэдс качественно хорошо согласуются со схемой расщепления 4f-уровня Yb³⁺, предложенной в [6] на основании измерений удельной теплоемкости и намагниченности. Расщепление 4*f*-уровня в КП YbNi₄In с образованием квадруплета в основном состоянии, определенное из измерений неупругого рассеяния нейтронов [5], представляется менее правдоподобным.

В случае YbNiIn₄ наблюдается режим сильно смешанной валентности Yb, который качественно хорошо описывается в примесной модели Андерсона с учетом вырождения. Необычным для такого типа соединений является наблюдение аномально низкого остаточного сопротивления в YbNiIn₄ при сравнительно высокой плотности состояний на уровне Ферми. По-видимому, кроме особенностей режима валентной неустойчивости Yb, в данном случае дополнительно проявляются особенности кристаллического строения. Согласно данным [7], в структуре YbNiIn₄ образуется пространственный каркас из атомов In (межатомные расстояния в каркасе $d(\ln - \ln) \approx 3.2$ Å, близки к соответствующим межатомным расстояниям в металлическом ln), который может формировать отдельную группу свободных носителей заряда из состояний р-типа, пространственно отделенных от локализованных 4f-состояний. В такой ситуации вклад от рассеяния носителей заряда на f-центрах в общее ρ будет шунтироваться высокой проводимостью *p*-зоны ln. Существованием такой зоны можно объяснить также обнаруженную слабую чувствительность остаточного электросопротивления к частичному атомному разупорядочению в YbNiIn₄, вызванному взаимозамещением Yb \leftrightarrow Ni в пределах ~ 2 at.%.

Список литературы

- [1] A. Amato. Rev. Mod. Phys. 69, 4, 1119 (1997).
- [2] М.Д. Котерлин, Б.С. Морохивский, Н.Г. Бабич, Н.И. Захаренко. ФТТ. 36, 3, 842 (1994).
- [3] М.Д. Котерлин, Б.С. Морохивский, Н.Г. Бабич, Н.И. Захаренко. ФТТ. 36, 3, 1162 (1994).
- [4] G. Liang, M. Croft. Phys. Rev. B40, 1, 361 (1985).
- [5] A. Severling, E. Gratz, B.D. Rainford, K. Yoshimura. Physica B163, 409 (1990).
- [6] J.L. Sarrao, R. Modler, R. Movshovich, A.H. Lacerda, D. Hristova, A.L. Cornelius, M.F. Hundley, J.D. Thompson, C.L. Benton, C.D. Immer, M.E. Torelli, G.B. Matrins, Z. Fisk, S.B. Oseroff. Phys. Rev. B57, 13, 7785 (1998).
- [7] В.И. Заремба, В.М. Бараняк, Я.М. Калычак. Вестн. Львов. ун-та. Сер. хим. 25, 18 (1984).
- [8] Я.М. Калычак, В.М. Бараняк, В.И. Заремба. Кристаллография 33, 4, 1017 (1988).
- [9] В.А. Ромака, Ю.Н. Гринь, Я.П. Ярмолюк. УФЖ 28, 7, 1095 (1983).
- [10] В.А. Ромака, Р.В. Сколоздра, Р.М. Рыхаль, О.С. Кошель. В кн.: Физика магнитных материалов. Иркутск (1981). С. 105.
- [11] М.Д. Котерлин, О.И. Бабич, Б.С. Морохивский, Л.И. Николаев, А.В. Ющенко. Препринт ИМФ № 15. Киев (1987). 28 с.
- [12] М.Д. Котерлин, Б.С. Морохивский, И.Д. Щерба, Н.Г. Герман. УФЖ 38, 2, 262 (1993).
- [13] J.M. Lawrence, G.H. Kwei, P.C. Canfield, J.G. De Witt, A.C. Lawson. Phys. Rev. B49, 3, 1627 (1994).
- [14] B. Cornut, B. Coqblin. Phys. Rev. 5, 11, 4541 (1972).
- [15] A.K. Bhattacharjee, B. Coqblin. Phys. Rev. B13, 8, 3441 (1976).
- [16] J.M. Kawrence. Phys. Rev. B20, 9, 3770 (1979).
- [17] J.C.P. Klaase, F.R. de Boer, P.F. de Chatel. Physica B106, 178 (1981).
- [18] M.T. Beal-Monod, J.M. Lawrence. Phys. Rev. B21, 10, 5400 (1980).
- [19] Y. Kuramoto, E. Müller-Hartmann. J. Magn. Magn. Mater. 52, 122 (1985).
- [20] A. Fujimori, T. Shimizu, H. Yasuoka. Phys. Rev. B35, 17, 8945 (1987).