06;08;12 Изгибные колебания полупроводниковых пластин при наличии импульсного источника возбуждения тепловой природы

© А.М. Орлов, А.А. Скворцов, А.В. Пирогов, В.А. Фролов

Ульяновский государственный университет

Поступило в Редакцию 16 апреля 1998 г.

Рассматривается воздействие импульсов тока на металлическую пленку, лежащую на полупроводниковой пластине. Показано, что пропускание токовых импульсов амплитудой $(1-7) \cdot 10^{10}$ A/m² и длительностью $(50-200 \, \mu s)$ через алюминиевые дорожки приводит к возбуждению звука. Получены экспериментальные зависимости энергии изгибных колебаний от длительности и амплитуды импульсного воздействия. Впервые обнаружено, что при оплавлении контакта металл-полупроводник происходит резкое увеличение энергии изгибных колебаний пластины.

Работа полупроводниковых приборов и интегральных схем обычно связана с повышенными тепловыми и механическими нагрузками, достигающими критических значений [1,2] при повышенных плотностях тока. При этом любые резкие изменения токовых нагрузок приводят к термическим ударам, возбуждающим различные типы механических колебаний. Между тем влияние процессов нагрева и деградации контактов на спектр и энергию колебаний практически не изучены и при возрастающей степени интеграции требуют повышенного к себе внимания. Поэтому в настоящей работе анализируются спектры и энергия изгибных колебаний кремниевых пластин при токовом нагреве металлизированных слоев специальных тестовых структур.

Акустические сигналы возбуждались ударом стального шарика массой 3–10 g о поверхность пластины и пропусканием прямоугольных токовых импульсов различной амплитуды ($j = (1-7) \cdot 10^{10} \text{ A/m}^2$) и длительности ($\tau = 50-200 \,\mu$ s) через алюминиевые дорожки, нанесенные на поверхность кремниевой пластины [3]. В качестве подложек использовались ориентированные в направлении [111] легированные фосфором кремниевые пластины с удельным сопротивлением $30 \,\Omega \cdot m$.

57

Пленки Al толщиной $3.2 \,\mu$ m наносились методом электронно-лучевого испарения со скоростью 2 nm/s при остаточном давлении $4 \cdot 10^{-4}$ Pa и температуре подложек 373 K.

Изгибные колебания фиксировались пьезокристаллическим датчиком, закрепленным на краю исследуемой пластины у основного базового среза. В роли датчика выступала пластина из пьезокерамики ЦТС-19 толщиной $d = 300 \,\mu$ m и диаметром 13 mm, собственные частоты которой ($f_i \ge 4$ MHz) находились выше спектрального состава сигналаотклика. Это позволяло фиксировать частотную характеристику среды по электрическому отклику с датчика U(t), который подавался на запоминающий осциллограф С9-8, состыкованный с ЭВМ для записи и накопления полученных данных. В целях разложения сигнала на элементарные составляющие производилась его частотная фильтрация с использованием стандартного алгоритма быстрого преобразования Фурье. Это позволяло рассматривать поведение как отдельных гармоник, так и энергии W изгибных колебаний пластины, связанных соотношением [4]

$$W = \frac{m}{4} \sum_{n} A_n^2 \omega_n^2, \tag{1}$$

где *т* — масса пластины, ω_n и A_n — все собственные частоты и амплитуды колебаний пластины.

Численные значения ω_n для пластины с зажатым краем легко рассчитать по уравнению [4]

$$\omega_n = 2\pi f_n = \frac{\pi^2 h}{b^2} \beta_n^2 \left[\frac{E}{3\rho(1-\sigma^2)} \right]^{0.5},$$
 (2)

если известны полутолщина h, ее радиус b, плотность ρ , модуль Юнга E, коэффициент Пуассона σ и корни соответствующего характеристического уравнения β_n .

Анализ параметров регистрируемого сигнала при механическом воздействии показал прямую пропорциональную зависимость между U(t) и колебательной скоростью v(t) [5]. Поэтому энергия изгибных колебаний в нашем случае пропорциональна $W \sim \sum_{n} U_n^2$, где U_n — амплитуды гармоник экспериментального спектра.

На рис. 1 приведены для сравнения спектры сигналов при механическом (*a*) и тепловом (токовом) ударах (*b*) для пластины с закрепленным краем. Видно, что возбуждение сигналов происходит в частотном

Рис. 1. Спектры изгибных колебаний пластины при механическом (*a*) и тепловом (*b*) воздействиях.

Сравнение теоретических и экспериментальных значений собственных час	тот
колебаний круглой пластины с закрепленным краем при механическом и тег	іло-
вом воздействиях	

Расчетное значение f_n	981	1836	2356	3216	3904	4189	5543	7138	7836	9695	16098
Механическое воздействие <i>f_n</i> , Hz	1270	2051	2393	3076	3809	4321	5786	6960	7935	9741	16750
Тепловое воздействие f _n , Hz	1270	2051	2344	3174	3857	4297	5859	6980	7788	_	_

диапазоне от 0.5 до 20 kHz, который соответствует модам изгибных колебаний. Действительно, сопоставление экспериментального спектра с рассчитанными по уравнению (2) значениями собственных частот изгибных колебаний дает хорошее согласие во всем спектральном интервале (см. таблицу). Это указывает, что даже незначительные для слоев металлизации токовые импульсы приводят к возбуждению изгибных колебаний в пластине. Генерация звука в этом случае обусловлена темпом расширения нагреваемых участков среды и имеют тепловую природу [7].

Рассмотрим применительно к анализируемой системе характерные особенности этого процесса. Если плотность мощности тепловых источников определяется выражением [7]:

$$Q(x, y, z, t) = \mu J(x, y) \exp(-\mu z) f(t), \qquad (3)$$

то при нагреве кремниевой пластины токовыми импульсами длительностью τ выполняется неравенство $\tau > \tau_a, \tau_{\chi}$ [6,8], а компоненты тензора напряжений σ_{RR} имеют вид [7]:

$$\sigma_{RR} = \frac{(4/n^2 - 3)\alpha a^2 J}{4} \Big(M(\theta) f'(t - R/C_L) + \tau_{\mu} K(\theta) f''(t - R/C_L) \Big).$$
(4)

В уравнениях (3) и (4) J(x,y) — мощность, выделяющаяся на контакте, W/m² \cdot s; μ — коэффициент поглощения, 1/m; f(t) —

Рис. 2. Зависимость амплитуды гармоник (a - 11.25 kHz, b - 7.788 kHz) от длительности токового импульса τ амплитудой $j = 3 \cdot 10^{10}$ A/m².

функция времени, определяющая форму импульса; R — расстояние от источника звука до точки наблюдения; χ — температуропроводность полупроводника; C_L и C_t — скорости распространения продольных и поперечных волн; $n = C_L/C_t$, $\tau_a = a/C_L$ и $\tau_{\chi} = \chi/C_L$ — характерные времена запаздывания звуковых волн; a — площадь контакта.

Нетрудно видеть, что форма звукового импульса зависит как от огибающей токового импульса, так и от мощности импульса излучения. Поэтому моменты включения и выключения импульса тока, когда скорости изменения температуры прогреваемого объема максимальны, должны быть определяющими в процессе возникновения колебаний. Более того, взаимодействие волновых пакетов в моменты нагрева и охлаждения при различных τ должно существенно влиять на амплитуду составляющих сигнал гармоник.

Подробный анализ спектров при импульсном токовом воздействии в интервале $\Delta \tau = 170-420 \,\mu s$ подтверждает это. Более того, зависимость является периодической с характерным временем $T_i = 1/f_i$ (рис. 2). Экстремальные значения амплитуды фиксированной гармоники f_i наступают при длительностях $\tau_i = \frac{(k+1)}{2 \cdot f_i}$, где $k = 1, 3, 5, \ldots$ соответствует минимумам, а $k = 2, 4, 6, \ldots$ — максимумам амплитуды. Следо-

Рис. 3. Зависимость энергии изгибных колебаний от длительности токового импульса при фиксированной $j = 3 \cdot 10^{10} \text{ A/m}^2$ (пунктирная линия) и амплитуды токового импульса при постоянной длительности $\tau = 110 \, \mu s$ (сплошная линия).

вательно, в результате изменения вклада соответствующих гармоник зависимость энергии изгибных колебаний от τ должна носить осциллирующий характер. Это наглядно подтверждается экспериментальной кривой $W(\tau)$ (пунктирная линия, рис. 3) в интервале длительностей $\Delta \tau = 250-380 \, \mu s$. Общее увеличение W с ростом τ связано, очевидно, с изменением плотности мощности тепловых источников Q.

Увеличение Q вплоть до критических значений не может не отразиться на энергии колебаний. В самом деле, при достижении $j = 6 \cdot 10^{10} \text{ A/m}^2$ на кривой W(j) (сплошная линия, рис. 3) наблюдается резкое увеличение энергии W. Независимые исследования процесса деградации контактов алюминий-кремний [3] показывают, что при плотностях тока $j \ge j_{\kappa}$ (τ фиксировано) происходит оплавление алюминиевой пленки и контактное плавление в системе Al–Si [9]. Это и способствует резкому возрастанию энергии изгибных колебаний за счет ступенчатого изменения удельного электрического сопротивления

металлизированного слоя Al при оплавлении [10]. Причем разрушение металлизированного слоя начинается тем раньше, чем больше плотность тока $j_{\kappa} \sim 1/(\tau_{\kappa})^{0.25}$.

Работа финансировалась грантом Госкомвуза "Деградационные процессы в многослойных тонкопленочных структурах на кремнии".

Список литературы

- [1] Oates A.S. // J. Appl. Phys. N 10. Pt. 1. P. 5369-5373. 1991.
- [2] Frost H.J. // Mater. Charact. N 4. 1994. P. 257-273.
- [3] *Орлов А.М., Костишко Б.М., Скворцов А.А.* // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 1997. № 1. С. 80–84.
- [4] Лепендин В.И. Акустика. М.: Наука, 1978. 342 с.
- [5] Домарскас В.И., Кажис Р.-И.Ю. Контрольно-измерительные пьезоэлектрические преобразователи. Вильнюс: Минтис, 1975. 255 с.
- [6] Физические величины: Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [7] Лямшев Л.М. Радиационная акустика. М.: Наука, 1989. 240 с.
- [8] Охотин А.С., Пушкарский А.С., Горбачев В.В. Теплофизичсекие свойства полупроводников. М.: Атомиздат, 1972. 187 с.
- [9] Орлов А.М., Костишко Б.М., Скворцов А.А. // Неорганические материалы. 1993. Т. 31. № 5. С. 668–672.
- [10] *Вилсон Д.Р.* Структура жидких металлов и сплавов. М.: Металлургия, 1972. 246 с.