01

## Переход к классическому поведению в мезоскопических магнитных системах и квантовая декогеренция

© В.В. Махро, Я.А. Падаманов

Московский педагогический государственный университет Братский индустриальный институт

Поступило в Редакцию 1 апреля 1999 г.

На примере мезоскопической системы  $CrNi_6$  демонстрируется возможность переходов от квантового типа поведения к классическому в процессах термостимулированного туннелирования. В качестве основного механизма, приводящего к таким переходам, предлагается рассматривать квантовую декогеренцию, возникающую в результате теплового взаимодействия спиновой системы с окружением. Приводятся результаты вычисления вероятности срыва для мезоскопической системы как функции температуры. Показано, что основным признаком, позволяющим обнаружить эффект декогеренции, является немонотонное поведение вероятности срыва в области низких температур.

Интерес к переходам мезоскопических систем от квантового типа поведения к классическому (и наоборот) вполне оправдан и с прикладной, и с общефизической точек зрения. В последнее время этот интерес направлен преимущественно на недавно открытые высокоспиновые магнитные кластеры типа  $Mn_{12}Ac$ ,  $CrNi_6$  и им подобные. Эти системы могут быть обнаружены в различных квазистационарных состояниях, разделенных обычно потенциальным барьером в несколько десятков К. Некоторое время назад считалось, что переход между такими состояниями происходит либо путем туннелирования, либо за счет термоактивации. При этом также предполагалось, что можно четко

1

разграничить по температуре области, где срыв обеспечивается какимлибо одним из указанных механизмов. Однако в дальнейшем стало понятно, что преодоление потенциального барьера обеспечивается всегда (даже при температурах, очень близких к нулю) комплексным действием обоих механизмов — термостимулированным туннелированием.

Схематически преодоление потенциального барьера в этом случае выглядит следующим образом. Система, будучи в тепловом равновесии с окружением, при данной температуре T с определенной вероятностью P(E,T) может приобрести энергию E. Далее эта система может преодолеть барьер уже с вероятностью, скажем, G(E). При этом важно подчеркнуть, что чистой термоактивации, в классическом понимании, не будет ни для каких значений E, хотя бы из-за необходимости учитывать надбарьерное отражение. В этом смысле, конечно, полностью исключены так называемые переходы первого рода от квантового типа срыва к классическому, обсуждавшиеся в [1–3]. Полная вероятность срыва мезоскопической системы как функция T дается

$$P_{tot}(T) = \int_{0}^{\infty} P(E,T)G(E)dE.$$

В большинстве случаев мезоскопическая спиновая система достаточно хорошо описывается моделью частицы в двухъямном потенциале. Даже в полуклассическом случае, в предположении квазинепрерывного спектра вычисление G(E) в явном виде возможно лишь у дна ямы. Для произвольного полуклассического потенциала U(x) соответствующее значение G(E) будет

$$G(E) = \frac{\bar{\omega}}{\pi} \exp\left(-\frac{\pi E}{\hbar \bar{\omega}}\right),\tag{1}$$

где  $\bar{\omega}=\sqrt{\frac{m}{|U''(x=x_{\min})|}}$  — частота классических колебаний у дна одной из ям потенциала, а условием его применимости будет:  $kT\ll\hbar\bar{\omega}$ . Предполагая максвелловское распределение по энергиям, для асимптотического поведения  $P_{tot}$  в пределе  $T\to 0$  имеем

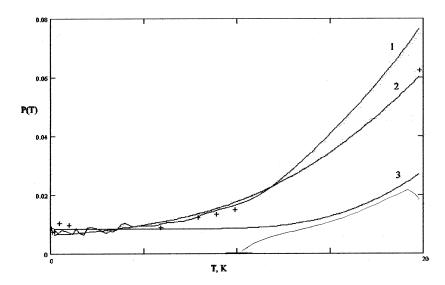
$$P_{tot}(T) \propto \exp\left(\frac{2\pi U_0}{\hbar \bar{\omega}}\right) \frac{\bar{\omega}^{3/2} \hbar^{3/2}}{(\hbar \bar{\omega} + 2\pi k' l')^{3/2}},$$
 (2)

где  $U_0$  — высота барьера. Выражение (2) дает возможность определить лишь тенденцию поведения интегральной вероятности срыва при

Письма в ЖТФ, 1999, том 25, вып. 16

низких температурах. С ростом температуры вероятность для частицы приобрести, благодаря взаимодействию с тепловой системой кристалла, более высокую энергию экспоненциально растет и полуклассическое выражение (1) становится неприемлемым. При произвольных значениях T более предпочтительным становится численный анализ ситуации (см., например, [4,5]). Использованные в этих работах численные схемы предполагают рассмотрение ансамбля идентичных частиц, локализованных в двухъямном потенциале, вычисление распределения этих частиц по энергиям (квазинепрерывного спектра в полуклассическом приближении или дискретного спектра в квантовом случае), вычисление вероятности перехода через барьер и, наконец, определение доли частиц, оказавшихся за барьером в результате туннелирования или надбарьерного перехода. Последнее и дает интегральную вероятность срыва системы.

Такие схемы дают результаты, достаточно удовлетворительно согласующиеся с данными экспериментов. Однако в области низких температур они предсказывают монотонное падение вероятности срыва с понижением температуры, тогда как в экспериментах (см., например, [6]) при температурах ниже 10 К регистрируются отклонения зависимости вероятности срыва от монотонного характера. Мы предполагаем, что причиной такого поведения становятся эффекты квантовой декогеренции при туннелировании.


Влияние декогеренции на туннелирование частицы в симметричном двухъямном потенциале впервые было описано в [7]. Эффект декогеренции возникал в результате воздействия на систему внешней периодической силы вида  $S\sin\bar{\omega}t$  и проявлялся в "замораживании" туннелирования при некоторых значениях S и  $\bar{\omega}$ . В дальнейшем в работах [8–10] были получены явные выражения для вероятности туннелирования в присутствии внешнего периодического возмущения:

$$P_{dec} = PJ_0 \left(\frac{2V}{\hbar \bar{\omega}}\right),\tag{3}$$

где P — вероятность туннелирования в отсутствии возмущения,  $J_0(x)$  — функция Бесселя. В частности, нули  $J_0(x)$  определяют параметры V и  $\bar{\omega}$ , при которых туннелирование полностью "замораживается", частица остается в одной из ям сколь угодно долго.

Мы будем моделировать взаимодействие частицы с тепловой системой кристалла взаимодействием с конечным набором классических

1\* Письма в ЖТФ, 1999, том 25, вып. 16



Вероятность срыва как функция температуры: 1 — вероятность термостимулированного туннелирования при учете декогеренции; 2 — вероятность термостимулированного туннелирования в отсутствие декогеренции; 3 — вероятность термостимулированного срыва, рассчитанная в соответствии с [6]; "+" — данные эксперимента [6].

гармонических осцилляторов с частотами  $\bar{\omega}_i$ , причем будем предполагать, что соответствующие амплитуды колебаний  $A_i$  пропорциональны вероятности реализации данной частоты при данной температуре. Тогда для  $V_i$  имеем:  $V_i = Cn(\bar{\omega}_i, T)\hbar\bar{\omega}_i$ , где C — константа связи. Возьмем функцию распределения  $n(\bar{\omega}_i, T)$  в виде  $(\exp(\hbar\bar{\omega}_i/kT)-1)^{-1}$ , что дает для аргумента функции Бесселя:  $C(\exp(\hbar\bar{\omega}_i/kT)-1)^{-1}$ . При заданной температуре T взаимодействие с "высокочастотными" осцилляторами  $(\bar{\omega}_i \gtrsim kT/\hbar)$  практически не влияет на модулированную вероятность туннелирования (3), так как с ростом отношения  $\hbar\bar{\omega}_i/kT$  функция Бесселя быстро стремится к 1. Напротив, взаимодействие с "низкочастотными" осцилляторами, доля которых растет с понижением температуры, ведет к появлению быстрых осцилляций в (3) и, как следствие, к резкому изменению характера  $P_{tot}(T)$  в области низких температур.

Письма в ЖТФ, 1999, том 25, вып. 16

Детальные расчеты подтверждают это качественное заключение. На рисунке мы представляем результаты сравнения численных расчетов вероятности срыва для системы CrNi<sub>6</sub> с данными эксперимента [6].

Во-первых, нужно отметить, что в области низких температур (ниже  $20\,\mathrm{K}$ ) срыв в этой системе действительно достаточно адекватно описывается термостимулированным (thermal assisted) туннелированием (кривые I и 2). Для сравнения здесь же мы даем кривую 3, построенную в соответствии с предположением авторов [6] о независимом протекании процессов туннелирования и термоактивации. Для объяснения расхождения между ходом кривой 3 и данными эксперимента авторы [6] использовали предположение о возникновении в районе температуры  $6\,\mathrm{K}$  фазового перехода первого рода от туннелирования к термоактивации, физические причины возникновения которого, впрочем, не комментировались.

Во-вторых, отметим возникновение участков немонотонного поведения функции  $P_{tot}(T)$  при  $T\lesssim 10\,\mathrm{K}$ , связанного с влиянием эффектов декогеренции (кривая I). Поскольку константа связи C для обсуждаемых материалов пока не известна и в наших расчетах служила, по сути, подгоночным параметром, ожидать детального совпадения результатов численного моделирования с данными эксперимента пока трудно. Однако уже само по себе появление подобных особенностей может служить достаточно обнадеживающим признаком реального присутствия декогеренции. В дальнейшем крайне желательно получение более детальных данных по ходу кривой  $P_{tot}(T)$  в области ниже  $10\,\mathrm{K}$ , что позволило бы также уточнить и величину константы связи.

## Список литературы

- [1] Chudnovsky E.M. // Phys. Rev. 1992. A46. P. 8011.
- [2] Garanin D.A., Chudnovsky E.M. // Phys. Rev. 1997. B 56. P. 11102.
- [3] Kou S.P. et al. // Phys. Rev. 1999. B 59. P. 6309.
- [4] Makhro V.V. // J. Phys.: Condens. Matter. 1998. V. 10. P. 6911.
- [5] Makhro V.V. Cond-mat/9807262 (LANL e-print).
- [6] Keren A. et al. Cond-mat/9806230 (LANL e-print).
- [7] F. Grossman, T. Dittrich, P. Jung, P. Hanggi // Phys. Rev. Lett. 1991. P. 516.
- [8] Gomez Llorente J.M. // J. Plata. Phys. Rev. 1992. A 45. P. 6958.
- [9] Wang L. J. // Shao. Phys. Rev. 1994. A 49. P. 637.
- [10] Kayanuma Y. // Phys. Rev. 1994. A 50. P. 843.

Письма в ЖТФ, 1999, том 25, вып. 16