01;05 Моделирование локализации деформации в задаче о динамике разупрочняющегося стержня

© Н.Н. Мягков

Институт прикладной механики РАН, Москва

Поступило в Редакцию 17 мая 1999 г.

На базе упругопластической модели с градиентом второго порядка рассмотрена динамика одномерного стержня в стадии деформационного разупрочнения, с учетом нелинейности падающего участка диаграммы. Найдено точное решение полученного нелинейного уравнения, решение описывает сильно неоднородную нестационарную структуру области локализации деформации, возникающую из начально-гладкого возмущения и заканчивающуюся коллапсом.

Известно, что нелинейность сплошной среды приводит к появлению локализованных образований — стационарных уединенных волн или солитонов. В последние годы [1] выяснилось, что не меньшую роль играют другие, родственные им, локализованные образования — волновые коллапсы. В настоящем сообщении будут рассмотрены локализованные решения применительно к задаче о динамике одномерного стержня в стадии деформационного разупрочнения.

Деформационное разупрочнение, падение напряжения при увеличении деформации, представляет стадию, предшествующую разрушению. Такое поведение имеет место для широкого класса материалов, включая металлы, бетон, геоматериалы. Попытки описания этого эффекта с помощью классических локальных моделей, нечувствительных к скорости деформации, приводят к тому, что система уравнений теряет свою гиперболичность, а задача Коши становится некорректной [2,3]. Возможны различные способы регуляризации этой задачи. С этой целью воспользуемся упругопластической моделью, в которой функция текучести зависит не только от напряжения и деформации, но и от градиента деформации второго порядка. В этом случае система уравнений для

48

одномерного стержня приобретет следующий вид [2]:

$$\frac{\partial \varepsilon}{\partial t} = \frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial t} = \frac{d\sigma_s(\varepsilon)}{d\varepsilon} \cdot \frac{\partial \varepsilon}{\partial x} - \delta^2 \frac{\partial^3 \varepsilon}{\partial x^3}, \tag{1}$$

 ε — полная деформация, u — скорость, $\sigma_s(\varepsilon)$ — диаграмма материала. Система (1) обезразмерена с помощью плотности ρ , скорости $\sqrt{E_y/\rho}$, где E_y — модуль упругости, и характерной длины L задачи. $\delta^2 = l^2/L^2$ — малый безразмерный параметр, причем l — внутренний структурный параметр материала, введенный для регуляризации упругопластической модели.

Предполагая состояние стержня однородным, рассмотрим малое возмущение этого состояния

$$\varepsilon', u' \propto \exp(ikx - i\omega t),$$

где ω , k — частота и волновое число соответственно, ε' и u' — приращение деформации и скорости, и, линеаризуя (1), найдем дисперсионное уравнение, соответствующее этой системе

$$\omega^2 = (-\kappa + \delta^2 k^2) k^2, \qquad (2)$$

где $\kappa = -d\sigma_s(\varepsilon_0)/d\varepsilon$. Падающему участку диаграммы (разупрочнению) соответствует $\kappa > 0$. Несмотря на то что система является чисто дисперсионной, при $\kappa > \delta^2 k^2$ корни дисперсионного уравнения (2) образуют комплексно-сопряженную пару: возникает так называемая дисперсионная неустойчивость (см., например, [4]). При $\kappa < \delta^2 k^2$ имеет место нейтральная устойчивость — волны распространяются дисперсионно. Параметр κ играет роль параметра управления. Точка минимума $k_c = 0, \kappa_c = 0$ на нейтральной кривой $\kappa = \delta^2 k^2$ является точкой бифуркации, а длинноволновая мода k = 0 является первой модой, которая становится неустойчивой при переходе параметра κ через ноль. При $\kappa > 0$ амплитуда начинает расти и ясно, что пренебрежение нелинейными членами на этой стадии становится неверным. Воспользуемся квадратичным приближением для $\sigma_s(\varepsilon)$: $\frac{d\sigma_s(\varepsilon)}{d\varepsilon} = -\kappa + f\varepsilon'$. Используя это соотношение, после простых преобразований из (1) получим уравнение для ε' :

$$\frac{\partial^2 \varepsilon'}{\partial t^2} + \frac{\partial^2}{\partial x^2} \left(\kappa \varepsilon' - \frac{1}{2} f \varepsilon'^2 + \delta^2 \frac{\partial^2 \varepsilon'}{\partial x^2} \right) = 0.$$
(3)

Локализация деформации (решение (9)) для различных значений параметра $a = -\exp(-A_{12}/2) \cdot \cos \varphi$ (указаны цифрами на рисунке). Решение симметрично относительно оси $\theta = 0$: $E = \varepsilon' \cdot (-f/(12\delta^2k^2)), f < 0, \theta = kx + \eta_R^{(0)} + A_{12}/2, \varphi = \Omega t + \eta_I^{(0)}, \Omega > 0.$

Заметим, что при $\kappa < 0$ уравнение (3) совпадает, с точностью до знака при старшей производной, с известным уравнением Буссинеска, которое встречается в различных физических приложениях (например, волны на поверхности воды, волны в дискретных цепочках) как длинноволновое приближение. Известно, что уравнение Буссинеска интегрируется методом обратной задачи рассеяния и имеет *N*-солитонные решения для волн, распространяющихся как вправо, так и влево [5]. Последнее, как нетрудно видеть, может служить формальной основой для построения класса точных нестационарных локализованных решений уравнения (3) для разупрочняющейся среды, соответствующей $\kappa > 0$.

Рассмотрим уравнение (3) для значений параметров $\kappa > 0, f < 0.$ Для построения точных частных решений воспользуемся методом Хи-

роты (см., например, [5]). Следуя этому методу, положим

$$\varepsilon' = -\frac{12\delta^2}{f} \cdot \frac{\partial^2(\ln F_N)}{\partial x^2},$$

где F_N — новая неизвестная функция. После подстановки в (3), два раза интегрируя и полагая константы интегрирования равными нулю, после преобразований получим квадратичную форму

$$F_{N,tt} \cdot F_N - F_{N,t}^2 + \kappa (F_{N,xx} \cdot F_N - F_{N,x}^2) + \delta^2 (F_{N,xxx} \cdot F_N - 4F_{N,x} \cdot F_{N,xxx} + 3F_{N,xx}^2) = 0.$$
(5)

Здесь $F_t \equiv \partial F / \partial t$, $F_{tt} \equiv \partial^2 F / \partial t^2$ и т. п. Воспользуемся тем же семейством функций, которое для "правильного" уравнения Буссинеска дает *N*-солитонные решения. Первая в этом семействе функция

$$F_1 = 1 + \exp(\eta_1), \quad \eta_1 = k_1 x \pm i k_1 \sqrt{\kappa + \delta^2 k_1^2} \cdot t + \eta_1^{(0)}, \tag{6}$$

где k_1 , $\eta_1^{(0)}$ — константы, причем k_1 — действительная постоянная, является решением уравнения (5) и с помощью преобразования (4) дает комплексное решение уравнения (3). Однако в данном случае физический смысл могут иметь только действительные решения уравнения (3). Для получения действительного решения необходимо воспользоваться, как минимум, функцией F_2 , порождающей двухсолитонное решение для "правильного" уравнения Буссинеска. В нашем случае имеем

$$F_{2} = 1 + \exp(\eta_{1}) + \exp(\eta_{2}) + \exp(\eta_{1} + \eta_{2} + A_{12}),$$
(7)
$$\eta_{m} = k_{m}x + i\chi_{m}k_{m}\sqrt{\kappa + \delta^{2}k_{m}^{2}} \cdot t + \eta_{m}^{(0)}, \quad \chi_{m} = \pm 1,$$
$$\exp(A_{12}) = \frac{3\delta^{2}(k_{1} - k_{2})^{2} + \left(\chi_{1}\sqrt{\kappa + \delta^{2}k_{1}^{2}} - \chi_{2}\sqrt{\kappa + \delta^{2}k_{2}^{2}}\right)^{2}}{3\delta^{2}(k_{1} + k_{2})^{2} + \left(\chi_{1}\sqrt{\kappa + \delta^{2}k_{1}^{2}} - \chi_{2}\sqrt{\kappa + \delta^{2}k_{2}^{2}}\right)^{2}},$$

 k_m — действительные, а $\eta_m^{(0)}$ — комплексные константы. Функция F_2 , являющаяся решением уравнения (5), будет действительной только

тогда, когда η_1 и η_2 будут комплексно-сопряженными величинами. Принимая $k \equiv k_1 = k_2$, $\eta^{(0)} \equiv \eta_1^{(0)} = (\eta_2^{(0)})^*$ и $\chi_1 = -\chi_2 = 1$, из (7) получим

$$F_2 = 1 + 2\exp(kx + \eta_R^{(0)}) \cdot \cos(\Omega t + \eta_I^{(0)}) + \exp[2(kx + \eta_R^{(0)}) + A_{12}], \quad (8)$$

где

$$\exp(A_{12}) = \frac{\kappa + \delta^2 k^2}{\kappa + 4\delta^2 k^2}, \ \Omega = k\sqrt{\kappa + \delta^2 k^2}, \ \eta_R^{(0)} = \operatorname{Re} \eta^{(0)}, \ \eta_I^{(0)} = \operatorname{Im} \eta^{(0)}.$$

Подставляя (8) в (4), получим решение в виде нестационарного локализованного состояния, достаточно быстро убывающего при $|x| \to \infty$:

$$\varepsilon' = -\frac{12\delta^2 k^2}{f} \cdot \frac{\operatorname{ch}(kx + \eta_R^{(0)} + A_{12}) \cdot \cos(\Omega t + \eta_I^{(0)}) \cdot \exp(-A_{12}/2) + 1}{[\operatorname{ch}(kx + \eta_R^{(0)} + A_{12}) + \cos(\Omega t + \eta_I^{(0)}) \cdot \exp(-A_{12}/2)]^2}.$$
 (9)

Решение для скорости, согласно (4) и первому уравнению системы (1), определяется как $u' = -\frac{12\delta^2}{f} \cdot \frac{\partial^2(\ln F_N)}{\partial x \partial t}$. После подстановки в это выражение решения (8) получим:

$$u' = -\frac{12\delta^2 k\Omega}{f} \cdot \frac{\operatorname{sh}(kx + \eta_R^{(0)} + A_{12}) \cdot \operatorname{sin}(\Omega t + \eta_I^{(0)}) \cdot \exp(-A_{12}/2)}{[\operatorname{ch}(kx + \eta_R^{(0)} + A_{12}) + \cos(\Omega t + \eta_I^{(0)}) \cdot \exp(-A_{12}/2)]^2}.$$
 (10)

Рассмотрим решение (9), полагая $\Omega > 0$ и для определенности $\eta_I^{(0)} = 0$. Обозначим $\theta = kx + \eta_R^{(0)} + A_{12}/2$. Видно, что решение (9) симметрично относительно оси $\theta = 0$ и при t = 0 описывает гладкое солитоноподобное возмущение. Рост амплитуды деформации и последующий коллапс обусловлены тем, что $\exp(A_{12}) < 1$. Локализация решения происходит в окрестности точки $\theta = 0$ (см. рисунок). В этой точке амплитуда растет со временем как

$$\varepsilon'(0) = -\frac{12\delta^2 k^2}{f} \cdot \frac{1}{1 + \exp(-A_{12}/2) \cdot (\Omega t)},\tag{11}$$

а эффективная ширина зоны локализации при этом уменьшается как

$$\Delta \theta = 2 \operatorname{arch} \left(\frac{2 - \exp(-A_{12}) \cos^2(\Omega t)}{-\exp(-A_{12}/2) \cos(\Omega t)} \right),$$
$$- \exp(A_{12}/2) < \cos(\Omega t) < 0.$$
(12)

Сингулярность решения (коллапс) достигается в точке $\theta = 0$ в момент времени

$$t_c = \Omega^{-1} \Big[\pi - \arccos(\exp(A_{12}/2)) \Big].$$
(13)

Интегралы движения выполняются в любой момент $t < t_c$, но расходятся в пределе $t \to t_c$. Возникающая в момент $t = t_c$ сингулярность является неинтегрируемой.

Аналогичным образом могут быть построены действительные решения уравнения (5) для N > 2. Например, при N = 4 решение будет представлять собой нелинейную суперпозицию двух локализованных образований.

Ясно, что при неограниченном росте деформации нельзя ограничиться лишь квадратичными членами в разложении $\sigma_s(\varepsilon)$, однако более существенным представляется включение в модель (3) диссипативных механизмов, приводящих к ограничению сингулярности на определенном уровне.

Список литературы

- [1] Захаров В.Е. // Проблемы физической кинетики и физики твердого тела. Киев: Наук. думка, 1990. С. 469–486.
- [2] Kukudzhanov V. // J. Phys. IV (France). 1998. V. 8. P. 207-214.
- [3] Кукуджанов В.Н. // Изв. РАН МТТ. 1998. № 6. С. 104–114.
- [4] Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. М.: Мир, 1988. 694 с.
- [5] Абловиц М., Сигур А. Солитоны и метод обратной задачи. М.: Мир, 1987. 479 с.