Квантовые поправки к сопротивлению нового нанообъекта — 2D слоя на внутреннем интерфейсе: кластеры Te-матрица (опал)

© Н.С. Аверкиев*, В.Н. Богомолов*, В.А. Березовец*,**, В.И. Нижанковский**, К.С. Романов*, И.И. Фарбштейн*

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

** Международная магнитная лаборатория,

53-421 Вроцлав, Польша

E-mail: iosif.farbshtein@mail.ioffe.ru

(Поступила в Редакцию 27 марта 2006 г.)

Экспериментально и теоретически исследовано низкотемпературное аномальное магнетосопротивление нового нанообъекта — 2D слоя на внутреннем интерфейсе: нанокластеры нелегированного теллура — диэлектрическая матрица (опал). 2D слой в структуре Те-опал представляет собой регулярную решетку сферических поверхностей, покрытых 2D проводящим дырочным слоем — "interface bubble lattice". Обнаруженные особенности магнетосопротивления качественно соответствуют теории квантовых поправок к сопротивлению, но проявляются в необычных для этого эффекта сильных магнитных полях (вплоть до 120 kOe). Развит метод расчета квантовых поправок к сопротивлению в рамках теории эффекта слабой локализации невзаимодействующих между собой частиц, учитывающий сложность геометрической структуры объекта и особенности электронного спектра Те. Найдены параметры, характеризующие процессы релаксации фазы 2D дырок. Полученные результаты сопоставлены с известными данными для 2D слоев, созданных на плоской поверхности монокристаллического Те. Обсуждаются особенности проявления эффекта слабой локализации в системе неупорядоченных относительно ориентации магнитного поля 2D плоскостей.

Работа поддержана РФФИ (грант № 06-02-16500а), научными программами РАН и Министерства науки и образования РФ (НШ-5596.2206.2).

PACS: 73.63.-b, 73.20.Fz

1. Введение

Исследование температурной зависимости гальваномагнитных свойств нанокластерного нелегированного теллура (Те), (Те, введенный в пустоты синтетического опала (Te/SiO₂)), привело к обнаружению нового класса наноструктур — регулярной решетки сферических соприкасающихся поверхностей, покрытых 2D проводящим дырочным слоем, возникающим на границе октаэдрических и тетраэдрических кластеров Те и сфер аморфного SiO₂, составляющего опал — "interface bubble lattice" (IBL) [1]. Двумерный характер проводимости таких структур подтверждается обнаружением при низких температурах аномального поведения магнетосопротивления (АМС) в классически слабых магнитных полях. Ранее этот эффект наблюдался в 2D слоях на поверхности монокристаллического Те и получил объяснение в рамках теории слабой локализации (Weak Localization (WL)) [2,3]. Однако развитие картины АМС в структуре Te/SiO₂ кардинально отличается от АМС 2D слоя на поверхности монокристаллического Те. А именно в структуре Te/SiO₂ развитие картины АМС продолжается вплоть до ~120 kOe, тогда как для 2D слоя на поверхности монокристаллического Те переход к классическому поведению магнетосопротивления происходит в значительно меньших магнитных полях — $H \sim 5 \,\text{kOe} \, [2,3]$.

В настоящей работе представлены результаты исследования магнетосопротивления нанокластерного нелегированного Те при гелиевых температурах. Некоторые предварительные результаты представлены на конференции Nano-2003 [4]. Предлагается метод расчета, позволяющий адаптировать теорию слабой локализации [2,5,6] к сложной геометрической структуре, которую имеет внутренний интерфейсный слой нанокластеры Те/плотноупакованные силикатные шары. Показано, что учет геометрических особенностей исследуемого объекта позволяет объяснить необычайно сильные для эффекта WL магнитные поля, в которых развивается картина АМС, найти параметры теории WL и сделать некоторые выводы об особенностях 2D слоя вблизи интерфейса Te-SiO₂ и проявления эффекта WL в системе произвольно ориентированных относительно магнитного поля и друг друга 2D плоскостей.

2. Эксперимент

Нанокластерные кристаллы Те изготовлялись путем внедрения под давлением в матрицу (синтетический опал) расплавленного нелегированного Те. Контрольные измерения показали, что в ходе технологических операций загрязнение Те было слабым. Об этом свидетельствует также измерение температурной зависимости эффекта Холла в диапазоне температур 1.4–300 K [1].

Рис. 1. Зависимость удельного сопротивления $\rho_{\exp}(H)$ нанокластерного образца Те, изготовленного из нелегированного материала, от поперечного магнитного поля.

Интегральные характеристики обсуждаемого далее образца, рассчитанные без учета коэффициента заполнения и реальной структуры Te/SiO₂: при 4.2 K удельное сопротивление $\rho_{exp}(4.2) = 3.776 \,\Omega$ сm, коэффициент Холла $R_{exp}(4.2) = 40.1 \,\mathrm{cm}^3/\mathrm{As}$. Измерения магнетосопротивления проводились при температурах $1.5-4.2 \,\mathrm{K}$ на переменном токе частотой 11 Hz. Величина тока не превышала $10\,\mu$ A. Магнитное поле до 130 kOe создавалось сверхпроводящим соленоидом, измеряемый сигнал записывался в память компьютера.

На рис. 1 представлены результаты измерения при гелиевых температурах удельного сопротивления образца $\rho_{\exp}(H)$, изготовленного из Те с исходной конценрацией дырок $p_{77K} \cong 1.10^{14} \text{ cm}^{-3}$.

Как следует из рисунка, в области классически слабых магнитных полей наблюдается положительное АМС, переходящее с увеличением магнитного поля H в отрицательное АМС. Обнаруженный эффект возрастает с понижением температуры. При $H \ge 100$ kOe становится заметным вклад классического магнетосопротивления — $\rho_{\exp}(H)$ начинает возрастать. Качественно аномальная зависимость $\rho_{\exp}(H, T)$ аналогична обнаруженной ранее в 2D аккумулирующих слоях на плоской поверхности монокристаллического Te [2,3], но происходит в значительно бо́льших магнитных полях.

3. Модель

Поскольку в проводимости структуры Te/SiO₂ в основном участвует двумерный слой на внутреннем интерфейсе опал/Te, разумно предположить, что квантовая поправка к проводимости образца $\Delta \sigma_{WL}(H)$ должна описываться модифицированной формулой для магнетопроводимости 2D дырок на плоской поверхности Te. С точки зрения явления WL, рассматриваемая система отличается от плоской поверхности Te тем, что в ней

углы между тригональной осью кристалла, направлением магнитного поля и нормалью к участкам 2D поверхности изменяются от точки к точке. Поэтому предлагаем сложную поверхность интерфейса структуры Te/SiO2 представить в виде суммы элементарных плоских участков. Для описания WL поправки к проводимости каждого такого участка можно использовать уже известные формулы [5,6]. Однако в первую очередь нужно учесть, что в двумерном случае WL поправка зависит не от полной величины магнитного поля, а от его нормальной составляющей. Таким образом, в выражении для $\Delta \sigma_{\rm WL}(H)$ следует заменить H на $H_{\rm eff} = H \cos \theta$, где H величина магнитного поля, *θ* — угол между нормалью к рассматриваемому элементарному участку поверхности и направлением магнитного поля. Эта замена приводит к тому, что эффективное магнитное поле $H_{\rm eff}$, разрушающее квантовую интерференцию, значительно меньше поля *H*, в которое помещена структура. Другими словами, для наблюдения эффекта WL в 2D слое на внутреннем интерфейсе структуры Te/SiO₂ необходимы значительно большие магнитные поля, чем в плоском случае.

Для того чтобы найти полную WL поправку к проводимости всего образца, необходимо решить сложную электротехническую задачу о растекании тока по двумерной поверхности IBL с известным распределением удельной проводимости. Для упрощения этой задачи аппроксимируем проводящую поверхность множеством касающихся некоторыми областями сфер. Электрически эти сферы соединяются лишь в местах касания — по шесть областей у каждой сферы. Такое большое количество контактов приводит к тому, что направления тока, магнитного поля и нормали к поверхности распределены практически изотропно, равномерно и независимо по всему образцу. Поэтому расчет квантовой поправки к проводимости для всей проводящей поверхности сводится к усреднению по углу θ выражения для квантовой поправки к 2D проводимости элементарной плоской поверхности ($\Delta \sigma_{WL}(H \cos \theta)$), умноженной на весовой множитель, определяемый как размером и формой контактов, так и другими параметрами структуры.

Поскольку неизвестно, какие именно конфигурации тригональной кристаллографической оси и нормали к поверхности присутствуют в образце, возьмем наиболее общую формулу для описания WL поправки к проводимости плоской поверхности теллура

$$\Delta \sigma_{WL}(H) = \sigma_0 \left\{ f_2 \left[\frac{H}{H_{\varphi} + H_v + H_{\gamma}} \right] + \frac{1}{2} f_2 \left[\frac{H}{H_{\varphi} + 2H_v} \right] - \frac{1}{2} f_2 \left[\frac{H}{H_{\varphi}} \right] \right\}, \quad (1)$$

где f_2 — дигамма-функция; H_{φ} — значение магнитного поля, связанное с временем релаксации фазы волновой функции при неупругом расссеянии на тепловых фононах; H_v и H_v — поля, связанные с упругим рассеянием при междолинных и внутридолинных переходах; σ_0 — нормировочная константа. Для выполнения усреднения эту формулу необходимо модифицировать, заменив функцию $f_2(H)$ на $g_2(H)$,

$$g_{2}(H) = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} f_{2}(H\cos\theta) d\varphi \sin\theta d\theta$$
$$= \frac{1}{2} \int_{0}^{\pi} f_{2}(H\cos\theta) \sin\theta d\theta, \qquad (2)$$

где ϕ — азимутальный угол.

Сопоставление теории и эксперимента и обсуждение результатов

На рис. 2 сопоставлены экспериментальные зависимости $\Delta \sigma(H)$ и теоретический расчет квантовой поправки к 2D проводимости IBL по формулам (1) и (2) с найденными в процессе подгонки параметрами. Значения параметров $H_{\varphi}, H_{\nu}, H_{\gamma}$ и σ_0 , соответствующие наименьшему среднеквадратичному отклонению, представлены в таблице. Здесь же для сравнения приведены данные для 2D слоев на двух основных кристаллографических поверхностях монокристалла Те [2,3]. Расчет проведен в области магнитных полей H < (50-70) kOe, где вклад классического магнетосопротивления несуществен. Видно, что в области слабых магнитных полей достигнуто удовлетворительное согласие расчета и эксперимента. Расхождение начинается в магнитных полях $H \cong 50 \,\mathrm{kOe}$ и может быть связано с неучтенным вкладом классического магнетосопротивления.

Видно, что значения характерных магнитных полей *H_i* для интерфейса теллур–опал, полученные в рамках

Рис. 2. Зависимость удельной проводимости $\Delta \sigma$ нанокластерного образца Те от магнитного поля при гелиевых температурах, найденная по результатам измерений $\rho_{\exp}(H, T)$ (рис. 1) (сплошная линия), и WL-поправка к проводимости 2D IBL структуры, рассчитанная по формулам (1), (2) с параметрами H_i , приведенными в таблице. Эксперимент — сплошная линия, расчет — значки.

Результаты нахождения параметров H_i , определяющих вид зависимости $\Delta \sigma_{WL}(H)$ и известные данные для плоской поверхности кристалла Te [1,3]

IBL	<i>Т</i> , К	$\sigma_0, \ \Omega^{-1} \cdot \mathrm{cm}^{-1}$	$H_{\varphi},$ kOe	H _v , kOe	$H_{\gamma},$ kOe
	1.55 2.0 3.0 4.2	0.046 0.035 0.033 0.031	0.322 0.377 0.412 0.617	0.094 0.136 0.117 0.153	20.065 15.189 12.110 10.877
Поверхность (0001) [2]	1.4		0.008	0.005-0.007	0.1-0.13
$(10\bar{1}0)$ [3]	1.6		0.0224	> 0.3	

теории WL (1) с использованием процедуры усреднения (2), по величине и характеру температурной зависимости находятся в разумных пределах. Как и в "плоском" случае [2,3], значение нормировочной константы σ_0 остается практически постоянным, магнитное поле H_{φ} линейно растет с увеличением температуры, параметр H_v обладает слабой температурной зависимостью, а параметр H_v значительно превосходит два первых. В то же время значения параметров H_{φ} и H_v для IBL заметно превосходят соответствующие величины для поверхности (0001) и более близки к параметрам H_{φ} , H_v для поверхности (1010). Это естественно, поскольку статистический вес участков поверхностей, параллельных главной оси кристалла C_3 , в 2 раза больше статистического веса поверхностей, перпендикулярных оси C_3 .

Представленные в таблице значения H_i (Te–SiO₂) по абсолютной величине превышают значения H_i (Te–TeO₂). Этот факт означает, что процессы релаксации фазы дырочного состояния в первом случае идут более интенсивно, т.е. частоты столкновений с тепловыми фононами и частоты упругих столкновений при междолинных и внутридолинных переходах в случае Te–SiO₂ существенно больше, чем для Te–TeO₂.

При сравнении абсолютной величины параметров H_i и их соотношения для плоского случая Te–TeO₂ и сферической 2D-поверхности вблизи интерфейса Te–SiO₂ следует иметь в виду, что характеристики 2D-дырок в этих аккумулирующих слоях могут сильно отличаться друг от друга как по характеру рассеяния, так и по концентрации. Действительно, интерфейс Te/TeO₂ создан путем окисления специально подготовленной поверхности кристалла, а интерфейс Te–SiO₂ — это контакт закристаллизовавшегося из расплава Te и аморфного силикатного шара диаметром ~ 2000 Å, состоящего из шаров меньшего диаметра. Естественно ожидать, что граничное рассеяние 2D-дырок в первом случае меньше, чем во втором.

Характеристики потенциального барьера, а следовательно, и концентрация (энергия) 2D-дырок в этих двух случаях также различны хотя бы в силу различия диэлектрической проницаемости SiO₂ и TeO₂ (ε кристаллического SiO₂ \cong 4.6, а ε (TeO₂) \cong 23 [7]).

Рис. 3. Сравнение зависимости $\Delta \sigma(H)$, найденной по результатам измерений магнетосопротивления (рис. 1), с расчетом по формуле (1) при значениях параметров, приведенных в таблице для T = 1.55 К. I -эксперимент, 2 -расчет.

Таким образом, предложенный метод анализа экспериментов по исследованию квантовых поправок к 2D проводимости 2D-слоя вблизи IBL структуры Te/SiO₂ позволяет, несмотря на ряд сделанных упрощений, определить величины параметров эффекта WL, близкие к их реальным значениям.

На рис. 3 представлена "реконструкция" зависимости $\Delta \sigma_{\rm WL}(H)$ для плоской поверхности, ортогональной магнитному полю, рассчитанная по формуле (1) с параметрами, взятыми из таблицы для T = 1.55 К. Видно, что расчетная зависимость $\Delta \sigma_{WL}(H)$ для "плоской" поверхности сильно отличается от экспериментальной. Это обстоятельство связано с тем, что для эффекта WL в Те характерно наличие трех каналов релаксации фазового состояния носителей заряда (дырок) [2,4,5]. В выражении (1) вклад этих каналов отражается наличием трех слагаемых, имеющих разные знаки и нелинейно зависящих от магнитного поля. В этой ситуации изменение эффективной величины магнитного поля при изменении ориентации рассматриваемой плоскости относительно Н изменяет соотношение слагаемых в (1) вплоть до изменения знака всего выражения. В результате эффект WL в 2D-среде, ориентационно разупорядоченной по отношению к направлению Н, существенно отличается от "плоского случая".

5. Заключение

В работе впервые исследовано и количественно проанализировано в рамках теории слабой локализации низкотемпературное AMC в новом нанообъекте: "внутреннем" 2D-слое в области интерфейса нанокластеры Те/опал. Показано, что необычно широкая для эффекта WL область магнитных полей (вплоть до 120 kOe), в которой проявляется эффект, обусловлена в первую очередь геометрическим фактором.

Сделаны некоторые заключения о различии процессов релаксации фазы волнового состояния 2D-дырок на интерфейсе Te/SiO₂ и Te/TeO₂. В частности, для 2D-дырок в области интерфейса Te/SiO₂ характерно гораздо более сильное рассеяние, сопровождающееся релаксацией фазы волнового состояния носителей заряда, чем в случае интерфейса Te/TeO₂.

Показано, что при наличии нескольких каналов сбоя фазы волнового состояния 2D-носителей заряда, эффект WL в 2D-среде, состоящей из ориентационно разупорядоченных по отношению к направлению **H** плоскостей, существенно отличается от "плоского случая".

Зависимость эффекта слабой локализации от ориентации кристаллографических осей Те в отдельном плоском участке также изменяет характерные магнитные поля, однако точный учет этих особенностей весьма сложен для рассматриваемой структуры.

Частично измерения проводились в Международной лаборатории сильных магнитных полей и низких температур, г. Вроцлав, Польша.

Список литературы

- [1] В.А. Березовец, В.Н. Богомолов, И.И. Фарбштейн, В.И. Нижанковский. ФТТ 44, 1695 (2002).
- [2] А. Березовец, И.И. Фарбштейн, А.Л. Шеланков. Письма в ЖЭТФ 39, 64 (1984).
- [3] Н.С. Аверкиев, А. Березовец, Г.Е. Пикус, Н.И. Саблина, И.И. Фарбштейн. ФТТ 40, 1554 (1992).
- [4] V.A. Berezovets, V.N. Bogomolov, I.I. Farbstein and V.I. Nizhankovskii. Proc of 11th Int. Symp. "Nano-structures: Physics and Technology". St. Petersburg, Russia (2003). P. 396.
 [5] A.L. Shelashar, S.J. Stet, Computer 52, 465 (1995).
- [5] A.L. Shelankov. Sol. Stat. Commun. 53, 465 (1985).
- [6] Н.С. Аверкиев, Г.Е. Пикус. ФТТ 38, 964 (1996); ФТТ 39, 1659 (1997).
- [7] А.А. Блистанов, В.С. Бондаренко, Н.В. Переломова и др. Акустические кристаллы. Справочник. Наука, М. (1982). 632 с.