Сверхтонкое и квадрупольное взаимодействия тригональных центров ¹⁵⁷Gd³⁺ в SrF₂ и BaF₂. Анализ искажений ближайшего окружения

© А.Д. Горлов, А.П. Потапов

Научно-исследовательский институт физики и прикладной математики при Уральском государственном университете, 620083 Екатеринбург, Россия

E-mail: Anatoliy.Gorlov@usu.ru

(Поступила в Редакцию 7 мая 1999 г.)

Описаны результаты экспериментальных ЭПР и ДЭЯР исследований тригональных примесных центров (ПЦ) ¹⁵⁷Gd³⁺ в SrF₂ и BaF₂. Определены параметры сверхтонкого и квадрупольного взаимодействий. Проведена оценка возможных искажений ближайшего окружения ПЦ в суперпозиционной модели, базирующаяся на результатах исследований ЭПР и ДЭЯР кубических и тригональных ПЦ в указанных кристаллах.

Тригональные центры Gd³⁺ со фторовой компенсацией возникают в SrF2 и BaF2 в процессе роста кристаллов во фторовой атмосфере. При этом избыточный положительный заряд ПЦ компенсируется ионом F⁻, локализованным в ближайшем к Gd³⁺ междоузлии по оси C_3 кристалла [1]. Этот дополнительный анион может привести к смещениям ближайших к ПЦ восьми F-, находившихся ранее в вершинах куба. Данных ЭПР для определения таких смещений недостаточно. Из лигандного ДЭЯР обычно тоже затруднительно определить координаты этих фторов, поскольку лигандное сверхтонкое взаимодействие (ЛСТВ) именно для ближайших к ПЦ лигандов оказывается не чисто диполь-дипольным. В данной работе показано, что совместное использование данных ЭПР, лигандного ДЭЯР и ДЭЯР ¹⁵⁷Gd³⁺ позволяет понять характер искажений кристаллической решетки вблизи ПЦ и иона компенсатора (F_k). Анализ таких искажений является целью работы, он основан на модели суперпозиции для параметров спинового гамильтониана (СГ) [2,3], сравнении констант СГ для кубических и тригональных центров 157 Gd³⁺ в кристаллах SrF₂ и BaF₂.

Результаты ЭПР и ДЭЯР исследований

Изучаемые монокристаллы выращены методом Чохральского с примесью ¹⁵⁷Gd₂O₃ (0.01% по весу в шихте) в атмосфере с избытком фтора. Все экспериментальные исследования проводились на супергетеродинных спектрометрах 3 cm диапазона при температуре T = 1.8 К. Как в SrF₂, так и BaF₂ наблюдались все известные спектры ЭПР с локальной фторовой и нелокальной компенсацией избыточного положительного заряда примеси. При направлениях внешнего магнитного поля Н вдоль главных осей симметрии центров сигналы ЭПР имели сложную структуру, которая определяется совместным действием как собственного сверхтонкого взаимодействия (СТВ), так и ЛСТВ. В других (промежуточных) ориентациях Н структура сигналов поглощения для всех некубических центров существенно зависела еще и от квадрупольного взаимодействия (КВ).

Спектры ЭПР тригональных центров были описаны стандартным спиновым гамильтонианом [4] в системе координат *XYZ*, оси которой параллельны соответственно кристаллографическим направлениям [112], [110], [111]. Полученные параметры СГ приведены в табл. 1. Для $BaF_2:Gd^{3+}$ наши результаты совпадают в пределах ошибок измерений с результатами работы [5].

Экспериментальные исследования СТВ и КВ проводились методами стационарного и нутационного ДЭЯР [6]. Анализ спектров ДЭЯР проводился на основе гамильтониана, включающего часть, описывающую ЭПР спектр, и добавочного члена H', ответственного за СТВ и КВ 157 Gd³⁺ (S = 7/2, I = 3/2) для симметрии $C_{3\nu}$ (все обозначения общепринятые [4])

$$H' = A_z S_z I_z + A_{xy} (S_x I_x + S_y I_y) - g_n \beta_n (\mathbf{HI}) + 1/3 P_2^0 O_2^0 (I) + 1/252 [(B_1 + B_2 + B_4) O_2^0 (S) O_2^0 (I) + (3B_1 - 3B_2 + 0.5B_4) (O_2^2 (S) O_2^2 (I) + \Omega_2^2 (S) \Omega_2^2 (I)) + (12B_1 + 6B_2 - 8B_4) \times (O_2^1 (S) O_2^1 (I) + \Omega_2^1 (S) \Omega_2^1 (I))] + A_1 O_3^0 (S) O_1^0 (I).$$
(1)
B (1) OCTOR WEILL THURLE TO HERE UP CONVERTING ROOMAGE

В (1) оставлены лишь те члены из симметрийно возможных, которые реально определяются из экспериментальных данных. В табл. 2 представлены соответствующие параметры СГ.

Для расчета параметров, приведенных в табл. 1 и 2, использовалась численная минимизация по набору резонансных полей ЭПР переходов или частот ДЭЯР одновременно для всех экспериментальных ориентаций магнитного поля на основе полной энергетической матрицы.

Суперпозиционный анализ параметров спинового гамильтониана и оценка локальных искажений

Если обратиться к табл. 2, то можно заметить, что константы CTB для тригональных центров в SrF_2 и BaF_2 практически изотропны, причем их величины в пределах

Кристалл	g_{xy}	g_z	b_2^0	b_4^0	b_4^3	b_6^0	b_6^3	b_6^6
$\frac{\mathrm{SrF}_2}{(tr)}$	1.9902 (16)	1.9924 (15)	-461.1 (2.5)	86.5 (1.0)	-2448 (16)	-0.8 (1.0)	-0.7 (1.8)	-25.2 (25.0)
$\frac{\mathrm{SrF}_2}{(cub)}$	1.9916 (7)	1.9916 (7)	0	84.3 (4)	-2384.4 (4)	-0.5 (5)	-6.6 (6.6)	-5 (5)
$\begin{array}{c} \operatorname{BaF}_2\\(tr)\end{array}$	1.9921 (15)	1.9921 (15)	-460.8 (2.6)	77.6 (1.0)	-2188 (17)	-0.8 (1.0)	-3.6 (4.0)	-6.0(5.9)
$\begin{array}{c} \text{BaF}_2 \ [6] \\ (cub) \end{array}$	1.9916 (5)	1.9916 (5)	0	75.5 (1.5)	-2134.5 (5.0)	-0.8 (2)	-9.3 (1.5)	-7.2 (1.3)

Таблица 1. Параметры спинового гамильтониана (в MHz), описывающего спектры ЭПР Gd^{3+} в SrF₂ и BaF₂ при T = 1.8 K

Таблица 2. Параметры СТВ и КВ 157 Gd ${}^{3+}$ в SrF₂ и BaF₂ (в MHz)

Кристалл	A_{xy}	A_z	$A_1, 10^4$	P_2^0	$B_1, 10^{-2}$	$B_2, 10^{-2}$	$B_4, 10^{-2}$
$\frac{\mathrm{SrF}_2}{(tr)}$	16.767 (3)	16.759 (2)	4 (2)	-33.434 (5)	-70 (5)	6 (6)	-15 (5)
$\frac{\mathrm{SrF}_2}{(cub)} [8]$	16.7534 (10)	16.7534 (10)	-3.4 (9)	0	-76 (8)	0	0
$\begin{array}{c} \text{BaF}_2\\(tr)\end{array}$	16.640 (7)	16.646 (3)	4 (2)	-29.932 (10)	-85 (5)	-4(5)	0
BaF_2 $(cub) [8]$	16.6398 (15)	16.6398 (15)	-3 (1)	0	-75 (10)	0	0

ошибок измерений равны значениям для кубических центров [7]. Кроме того, близки значения b_4^0 , b_4^3 и b_6^0 для двух типов ПЦ как в SrF2, так и в BaF2, чтобы было отмечено ранее в [5,8] (см. табл. 1, где эти параметры приведены в тригональной системе координат). Общеизвестно, что параметры СГ существенно зависят от координат ближайших лигандов, а их величины определяются как электростатическим взаимодействием, так и перекрыванием, и ковалентностью в комплексе $Gd^{3+}F_8^-$ [2–4,8]. В свою очередь, СТВ тоже зависит от расстояний R_i между ПЦ и ближайшими лигандами, а также степени ионности в таком комплексе [4] (см. табл. 3 в [7]). Отсюда можно сделать вывод, что при переходе от кубических к тригональным центрам Gd³⁺ со фторовой компенсацией в указанных кристаллах не происходит значительных изменений координат ближайших к ПЦ восьми ионов F⁻.

Действительно, лигандный ДЭЯР тригонального центра $BaF_2:Gd^{3+}$ (полные результаты будут изложены в отдельной работе) показал, что заметные смещения F^{19} происходят лишь вблизи F_k , причем окружение ПЩ можно разделить на две области плоскостью, содержащей ПЦ и перпендикулярной оси симметрии центра. В первой области (не содержащей F_k) положение анионов то же, что и в кубическом ПЦ для ядер F^{19} во второй и более далеких сферах окружения. Для таких сфер ЛСТВ чисто магнитодипольное, как и для F_k , поэтому координаты соответствующих ядер легко определяются. Для ближайших к Gd^{3+} ионов фтора, где вклад в ЛСТВ существенно зависит как от R_i , так и от химических связей, напрямую определяются лишь угловые координаты. Для ионов фтора, составляющих треугольник, они практически совпадают с кубическими (в кубе $\theta = 109.47^{\circ}$, $\varphi = 0 \pm 120^{\circ}$), а из экспериментальных данных для тригонального центра получается $\theta_1 = 109.59^{\circ}(11)$, $\varphi_1 = \varphi$. На наш взгляд R_1 в треугольнике также близки к кубическим (в кубе R = 2.431 Å [7]), поскольку заметные смещения ближайших к ПЦ лигандов обычно сопровождаются заметными сдвигами ядер во второй сфере [7]. Аналогична ситуация и для иона фтора, находящегося на оси C_3 .

Во вторую область (содержащую F_k) кроме F^{19} второй и более далеких сфер попадают 4 оставшихся из ближайших к ПЦ F⁻, три из которых также составляют правильный треугольник с угловыми координатами $\theta_2 = 71.02^{\circ}(8), \varphi_2 = \varphi$ (в кубе $\theta = 70.53^{\circ}, \varphi = 60^{\circ}, 180^{\circ}, 300^{\circ})$, а один расположен на оси C_3 . Здесь расстояния, конечно, отличаются от кубических, поскольку компенсатор расталкивает одноименные заряды. Расстояние от ПЦ до компенсатора, определенное из данных лигандного ДЭЯР, $R_k = 5.178(9)$ Å.

Для оценки смещений ближайших к ПЦ лигандов во второй области воспользуемся суперпозиционной моделью [2,3], которая позволяет представить параметры СГ в виде $b_n^m = \sum b_n(R_i) \cdot k_n^m(\theta_i, \varphi_i)$. Здесь $b_n(R_i)$ — "intrinsic" параметр, соответствующий *i*-му ближайшему лиганду со сферическими координатами R_i , θ_i , φ_i , а $k_n^m(\theta_i, \varphi_i)$ его угловой структурный фактор [2].

51

Проанализируем эти факторы в системе координат тригонального ПЩ. Оказывается, что основные вклады в b_4^0 дают фторы, расположенные на оси C_3 ($\theta = 0^\circ$, 180°), а в b_4^3 — только фторы с $\theta \neq 0^\circ$, 180° . Таким образом, можно рассортировать 8 ближайших к ПЩ ионов F⁻ в соответствии с их вкладами в параметры СГ. Поскольку для тригональных центров координаты ближайшей четверки лигандов в первой области те же, что и в кубических ПЩ, можно определить вклады, приходящиеся на один из ближайших F⁻ из второй области, затем сравнить их с аналогичными значениями для кубических. Для фторов, составляющих треугольник, эти величины определяются как [2]

$$b_4(tr) = \left[b_4^3(tr) - b_4(cub)K_4^3(\theta_1,\varphi_1)\right]/K_4^3(\theta_2,\varphi_2), \quad (2)$$

где $b_4(cub) = b_4^0(cub)/K_4^0(\theta,\varphi) = b_4^3(cub)/K_4^3(\theta,\varphi),$ а из-за эквивалентности фторов в треугольниках $K_4^3(\theta_i,\varphi_i) = \sum_{1}^{3} k_4^3(\theta_i,\varphi_i).$

Для кубических ПЦ в BaF₂ и SrF₂ получается $b_4(cub) = 36.4(2)$ и 40.6(1) MHz, а для тригональных соответственно — $b_4(tr) = 38.4(8)$ и $\geq 41.7(1.2)$ MHz. При расчете $b_4(tr)$ для SrF₂ использованы $k_4^3(cub)$, так как нет результатов по лигандному ДЭЯР для этого кристалла. Однако из-за увеличения θ_2 по сравнению с соответствующим углом для кубического ПЦ $K_4^3(cub) \geq K_4^3(tr)$, поэтому приведенное $b_4(tr)$ для SrF₂ является нижней границей.

Условие $b_4(tr) > b_4(cub)$ указывает на смещение лигандов, близких к компенсатору и ПЦ. Направление и оценку этих сдвигов можно получить из зависимости $b_4(R)$ для кубических центров Cd³⁺ в CaF₂, SrF₂, BaF₂. Взяв R_i и функциональную зависимость из [7], получаем

$$b_4(R) = b_4(R_0)(R_0/R)^n,$$
 (3)

где $R_0 = 2.37$ Å [3], $b_4(R_0) = 40.9(3)$ MHz, n = 4.72(6),

Параметр b_4 не зависит от локальной симметрии ПЩ [2], поэтому, определяя из экспериментальных данных значение $b_4(R)$, соответствующее *i* лиганду, можно из (3) оценить велчину R_i . Для тригонального ПЦ в BaF₂, где известны все $k_n^m(\theta, \varphi)$ лигандов, получаем $R_2 = 2.401(12)$ Å для F⁻, находящихся в близком к F_k треугольнике, при условии, что R_i ядер, далеких от F_k, такие же, как в кубическом ПЦ.

Для оценки расстояния до F^- , находящегося на оси C_3 , используем экспериментальное значение b_2^0 , которое зависит как от R_k , так и всех R_i . Взяв из [3] "intrinsic" параметры и выражение для b_2^0 , получаем $R_3 = 2.385(14)$ Å. В определении R_3 нельзя было использовать величину $b_4^0(tr)$, поскольку неизвестен вклад в нее от компенсатора. Отметим, что приведенные ошибки в значениях R_2 и R_3 рассчитывались из ошибок экспериментально определенных параметров СГ и угловых координат лигандов.

Проделать аналогичные расчеты для тригонального ПЦ в SrF_2 затруднительно, поскольку нет экспериментальных данных о структурных угловых факторах

ближайших к ПЦ лигандов. Однако более "жесткая" решетка SrF₂ предполагает меньшие угловые и радиальные искажения, чем в BaF₂. Считая, что характер искажений одинаков в обоих кристаллах, принимаем, что R_1 , θ_1 , φ_1 такие же, как и в кубическом ПЦ в SrF₂ ($R_1 = 2.372$ Å [7]). Для оценки R_2 используем тот факт, что для ионов F⁻, образующих треугольник во второй области, 70.53° $< \theta_2 < 71.02°$, т.е. угловые координаты промежуточны между кубическими и теми, что определены для тригонального ПЦ в BaF₂. В этих пределах оказывается 2.340 $< R_2 < 2.346$ Å. Все дальнейшие оценки расстояний в SrF₂ будут использовать среднее значение $R_2 = 2.343$ Å.

Величину R_3 можно оценить следующим образом. По аналогии с тригональным ПЩ в BaF₂, где компенсатор сдвинут к Gd³⁺ на 0.03 Å относительно точки, находящейся посередине между двумя F⁻ первой и четвертой сфер, расположенными на оси C_3 в кубическом ПЩ, считаем что $R_k < R = 4.935$ Å (расстояние до такой же точки в SrF₂). При $R_k = R$ из экспериментального b_2^0 получаем $R_3 = 2.326$ Å. Уменьшение R_k на 0.03 Å, что соответствует сдвигу F_k в BaF₂, приводит к $R_3 = 2.325$ Å, т. е. практически не изменяет эту величину. Ошибки в рассчитанных значениях R_2 и R_3 в рамках описанной выше модели для SrF₂ не менее 5% из-за неточности в "intrinsic" параметрах [3], неопределенности в θ , R_k и экспериментальных ошибок в b_n^m .

Чтобы удостовериться в правильности оценок искажений окружения ПЩ, рассчитаем средние вклады в b_4^0 , связанные с ближайшими лигандами. Взяв выражение (3), соответствующие k_n^m и R_i , получим $b_4^0(tr) = 80.2$ и 89.5 MHz для BaF₂ и SrF₂. Эти величины больше экспериментальных значений, что и следует ожидать, поскольку вклад F_k , который является, согласно данным по ЛСТВ, точечным зарядом для ПЩ, здесь должен быть отрицательным [4].

Дополнительным подтверждением достоверности полученных оценок R_i может служить расчет в той же модели суперпозиции величин P_2^0 для рассматриваемых центров [3]. Если взять "intrinsic" параметры $P_{2p} = -120 \cdot 10^{-4} \text{ cm}^{-1}$ и $P_{2s} = 60 \cdot 10^{-4} \text{ cm}^{-1}$, получаются значения $P_2^0 = -29$ и -31 MHz для BaF₂ и SrF₂ (при $R_k = 4.915$ Å), близкие к экспериментальным. Заметим, что P_{2p} и P_{2s} отличаются от приведенных в [3], где эти величины определялись из системы уравнений, содержащих феноменологические K_n^m , причем при оценке K_n^m использовались параметры кристаллического поля A_2^0 не для Gd³⁺, а для других редкоземельных ионов, что может быть причиной таких различий. Более точно оценивать R_k и P_2^0 не имеет смысла из-за ошибок в R_i и "intrinsic" параметрах.

Подводя итог всему вышеизложенному, можно утверждать, что использование совокупности данных ЭПР и ДЭЯР позволяет на основе суперпозиционной модели получить картину локальных искажений ближайшего окружения ПЦ в тригональных фторовых центрах Gd³⁺ в кристаллах со структурой флюорита. Получено: ион ${\rm Gd}^{3+}$ локализован в том же месте, что и кубических ПЦ; четверка ближайших F⁻ со стороны иона компенсатора отталкивается от компенсатора, причем расстояние между ними и ПЦ уменьшается; оставшаяся четверка F⁻ занимает те же положения, что и в кубическом центре. Заметим, что такая модель искажений отличается от результатов Ньюмена [8], но близка к данным работы [9], где описан лигандный ДЭЯР тригональных ПЦ Yb³⁺ в тех же кристаллах.

Список литературы

- [1] U. Ranon, A. Yoniv. Phys. Lett. 9, 1, 17 (1964); J. Sierro. Phys. Lett. 4, 2, 178 (1963).
- [2] D.J. Newman, W. Urban. Adv. Phys. 24, 2, 793 (1973).
- [3] L.I. Levin, A.D. Gorlov. J. Phys.: Condens. Matter. 4, 2, 1981 (1992).
- [4] С.А. Альтшуллер, Б.М. Козырев. Электронный парамагнитный резонанс. М., Наука (1972). 672 с.
- [5] L.A. Boatner, R.W. Reynolds, M.M. Abraham. J. Chem. Phys. 57, 5, 1248 (1970).
- [6] А.Д. Горлов, А.П. Потапов, Ю.А. Шерстков. ФТТ 27, 9, 2861 (1985).
- [7] V.A. Chernyshev, A.D. Gorlov, A.A. Mekhonoshin, A.E. Nikiforov, A.I. Rokeakh, S.Yu. Shashkin, A.Yu. Zaharov. Appl. Magn. Reson. 14, 1, 37 (1998). А.Д. Горлов, В.Б. Гусев, А.Ю. Захаров, А.Е. Никифоров, А.И. Рокеах, В.А. Чернышев, С.Ю. Шашкин. ФТТ 40, 12, 2172 (1998).
- [8] A. Edgar, D.J. Newman. J. Phys. C.: Solid State Phys. 8, 23, 4023 (1975).
- [9] О.В. Назарова, Т.И. Санадзе. Сообщения АН ГССР 87, 2, 329 (1977).