Автолокализованные экситоны в боратах лития LiB₃O₅ и Li₂B₄O₇. Низкотемпературная люминесцентная ВУФ-спектроскопия с временным разрешением

© И.Н. Огородников, В.А. Пустоваров, А.В. Кружалов, Л.И. Исаенко*, М. Кирм**, Г. Циммерер**

Уральский государственный технический университет, 620002 Екатеринбург, Россия * Институт монокристаллов Сибирского отделения Российской академии наук, 630058 Новосибирск, Россия ** II. Institut für Experimentalphysik der Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany E-mail: OGO@dpt.ustu.ru

(Поступила в Редакцию 31 марта 1999 г. В окончательной редакции 3 августа 1999 г.)

Представлены результаты комплексного исследования динамики электронных возбуждений в кристаллах LiB₃O₅ и Li₂B₄O₇, полученные методом низкотемпературной люминесцентной ВУФ-спектроскопии с субнаносекундным временным разрешением при фотовозбуждении синхротронным излучением. Впервые получены данные по кинетике затухания фотолюминесценции (ФЛ), спектрам ФЛ с временным разрешением, спектрам возбуждения ФЛ с временным разрешением и спектрам отражения при 295 и 9.6 K; установлен собственный характер ФЛ боратов в области 3.5 eV, обусловленный излучательной аннигиляцией автолокализованного экситона (АЛЭ); выделены σ - и π -полосы свечения АЛЭ, обусловленные синглетными и триплетными излучательными переходами; объяснен сдвиг σ -полосы АЛЭ относительно спектрального положения π -полосы; выделена полоса рекомбинационной люминесценции LBO; обсуждаются каналы создания и распада релаксированных и нерелаксированных экситонов в боратах лития.

Работа поддержана Европейской Комиссией (грант N IC15CT960721).

Кристаллы низкосимметричных оксидов широко используются в современной коротковолновой лазерной оптике в качестве нелинейных преобразователей, параметрических осцилляторов и других оптических элементов. С кристаллографической точки зрения такие кристаллы характеризуются сложной элементарной ячейкой (ЭЯ), содержащей несколько формульных единиц, что может составлять десятки и сотни атомов. Следствием этого является наличие большого числа путей формирования различных структурных и химических связей между атомами или их группами, что зачастую реализуется одновременно в одном и том же кристалле. Традиционные модели развитые и успешно применяемые для описания динамики электронных возбуждений (ЭВ) в кубических кристаллах с существенно ионным типом связи, не дают, как правило, исчерпывающего описания всего комплекса экспериментальных данных даже для наиболее простых низкосимметричных оксидных кристаллов этой группы (например, BeO [1]). В этой связи в качестве альтернативной часто используют простую релаксационную модель, основанную на рассмотрении самых нижних состояний электронно-дырочного континуума, соответствующих экситонных состояний и гипотезы о наличии нескольких различных ветвей релаксации ЭВ [2,3].

Причины ветвления релаксационных каналов связывают со значительной неоднородностью (включая пространственную) электронной структуры. Даже в относительно простых оксидах ион кислорода, определяющий

состояния валентной зоны (ВЗ), расположен в низкосимметричных позициях и обусловливает формирование неоднородной структуры ВЗ: узкой подзоны несвязывающего типа вблизи потолка ВЗ и относительно широкой подзоны другого типа в глубине ВЗ [4-6]). Переходы, включающие состояния различных энергетических подзон, могут полностью или частично перекрываться. Предельный случай реализуется в кристаллах с оксианионами, где хорошо локализованные состояния ковалентно связанных атомов ответственны за низкоэнергетические оптические переходы и формирование внутриоксианионного экситона "молекулярного" типа [2,7]. Во многих оксидных системах (например, в CaWO₄ и PbWO₄ [8]) характер химической связи позволяет однозначно выделить анионную группу, тогда как в других сложных оксидах выделить подобную группу атомов не представляется возможным, однако заметная роль неоднородной структуры ВЗ проявляется и в этом случае [5,8].

Нелинейные кристаллы тетрабората лития $Li_2B_4O_7$ (LTB) и трибората лития LiB_3O_5 (LBO) с этой точки зрения представляют значительный интерес. В табл. 1 представлены некоторые структурные и люминесцентнооптические параметры боратов лития по данным [9–12]. Кристаллы LBO принадлежат орторомбической сингонии с параметрами решетки a = 0.8447, b = 0.5141, c = 0.7379 nm. Основной структурный мотив — анионная группа — состоит из тетраэдра BO₄ и двух неэквивалентных тригональных структур BO₃. Кристаллы LTB принадлежат тригональной сингонии с параметрами ре-

455

Таблица 1. Структурные и люминесцентно-оптические	пара-
метры кристаллов LBO и LTB по данным [9-12]	

Параметр	LiB ₃ O ₅	$Li_2B_4O_7$
Пространственная группа Число формульных единиц в ЭЯ	$Pn2_1a$ 4	<i>I</i> 4 ₁ <i>cd</i> 8
Число атомов в ЭЯ	36	104
Основной мотив структуры	$[B_3O_7]^{5-}$	$[B_4O_9]^{6-}$
Число неэквивалентных анионов	5	4
Число неэквивалентных атомов бора	3	2
Максимумы полос люминесценции, nm	290	290
	350	360
Полоса прозрачности, nm	159-3500	165-5500

шетки a = b = 0.9477 nm, c = 1.0286 nm. Структурный мотив представлен двумя эквивалентными тетраэдрами и двумя эквивалентными тригональными структурами. В обоих кристаллах LBO и LTB анионные группы точно стыкуются друг с другом, формируя в каждом из кристаллов непрерывную сеть — борокислородный каркас. Атомы лития располагаются в пустотах данного каркаса и выполняют роль стабилизаторов структуры.

Основные кристаллографические мотивы достаточно полно передают электронную структуру обоих кристаллов. Об этом свидетельствует, в частности, достаточно хорошее совпадение результатов зонных и кластерных расчетов электронной структуры LBO [13-15] и LTB [16,17]. Так, из результатов расчета [18] следует, что потолок B3 в LBO формируют главным образом 2р-*π*-орбитали атомов кислорода, лежащих на стыке тригональных и тетраэдрических структур, а дно зоны проводимости (ЗП) образовано гибридизованными борокислородными орбиталями, принадлежащими только тригональным структурам. Для LTB предсказывают похожую электронную структуру: потолок ВЗ формируют главным образом орбитали тетраэдрических структур, а дно ЗП образовано гибридизованными орбиталями тригональных структур [16,17]. Во всех работах отмечают малую дисперсию состояний вблизи потолка ВЗ и указывают на незначительный вклад атомов лития в формирование электронной структуры LBO и LTB. Поскольку состояния потолка ВЗ и дна ЗП определяют природу и свойства самых низкоэнергетических электронных переходов в кристалле, то следует ожидать значительное сходство между LBO и LTB в динамике электронных возбуждений, свойствах собственной люминесценции и других явлениях. С этим согласуются известные экспериментальные данные по их люминесцентно-оптическим свойствам. Так, спектры люминесценции LTB и LBO приведены в работах [11,12,19], спектры возбуждения люминесценции изучали в [20-22], в [16,20,23] измерены спектры отражения для LTB в области энергий до 20 eV, спектры некоторых оптических констант для LTВ в области энергий 7-18 eV приведены в [16,23]. Спектры отражения LBO известны лишь для ограниченной области энергий 6-12 eV [24]. Все известные

экспериментальные данные не противоречат гипотезе о собственном характере широкополосной ультрафиолетовой люминесценции этих кристаллов и о ее обусловленности излучательной аннигиляцией автолокализованных экситонов (АЛЭ) или экситонов, локализованных на дефектах решетки [11,22].

Цель настоящей работы — комплексное исследование кристаллов LBO и LTB методом низкотемпературной люминесцентной ВУФ-спектроскопии с временным разрешением при селективном фотовозбуждении синхротронным излучением. В первой части работы представлены и обсуждаются результаты исследования кинетики затухания, времяразрешенных спектров фотолюминесценции (ФЛ) (1.2–8 eV), времяразрешенных спектров фотовозбуждения (CB) (6–20 eV). Вторая часть работы посвящена изучению спектров отражения и спектров оптических констант в области энергий 6–40 eV, а также процессов фотонного умножения.

1. Эксперимент

В работе использованы образцы номинально чистых кристаллов LBO и LTB, технология выращивания которых описана в [17,22]. Образцы $8 \times 8 \times 1$ mm имели полированные плоскопараллельные поверхности лазерного качества. Плоскости образцов LBO были перпендикулярны кристаллографическим осям X или Z (LBO $\perp X$ и LBO $\perp Z$).

Измерения выполнены на станции SUPERLUMI лаборатории HASYLAB, DESY [25]. Образцы крепили на кристаллодержатель продувного гелиевого криостата, обеспечивающего вакуум не ниже 2 · 10⁻¹⁰ Torr. Представленные результаты получены при температурах 295 и 9.6 К. Импульсы синхротронного излучения накопителя DORIS имели гауссову форму ($FWHM = 130 \, \text{ps}$) с периодом повторения 480 ns. Система регистрации позволяла измерять кинетику затухания люминесценции в различных спектральных точках при селективных энергиях фотовозбуждения от 4 до 40 eV, а также спектры фотовозбуждения и люминесценции во временном окне шириной Δt , задержанном относительно импульса возбуждения на величину δt . В настоящей работе для регистрации спектров были использованы два независимых временны́х окна с параметрами: $\delta t_1 = 1.2$ и $\Delta t_1 = 5.9 \,\mathrm{ns}$ (быстрый компонент); $\delta t_2 = 23.5$ и $\Delta t_2 = 111 \, \text{ns}$ (медленный компонент). Иными словами, одновременно регистрировали два спектра в двух различных временных интервалах. Одновременно с этим регистрировали спектр стационарной фотолюминесценции (СФЛ) (без временно́го разрешения), который в большинстве случаев совпадал со спектром медленного компонента. Первичный монохроматор со сменными дифракционными решетками, покрытыми алюминием (4-20 eV) и платиной (5-40 eV), имел спектральное разрешение 0.33 и 0.25 nm соответственно. Люминесценцию в видимом и ультрафиолетовом диапазонах регистриро-

Рис. 1. Временной профиль аппаратной линии импульса возбуждения и положение временны́х окон Δt_1 и Δt_2 .

вали с помощью 0.5 m монохроматора (схема Черни– Тэрнера) и фотоэлектронного умножителя (ФЭУ) R2059 (Hamamatsu). Для поисковых измерений люминесценции в области вакуумного ультрафиолета применяли 0.5 m вакуумный монохроматор и ФЭУ R1460. Одновременно со спектрами возбуждения регистрировали спектр отражения от образца под углом падения 17.5°. Спектры возбуждения люминесценции, приведенные в данной работе, нормированы на равное число падающих фотонов с использованием салицилата натрия. На рис. 1 показан аппаратный профиль импульса возбуждения (*FWHM* около 700 ps). Стрелкой обозначен систематический аппаратный выброс, учитывающийся при анализе кинетики и выборе временны́х окон Δt_1 и Δt_2 .

2. Результаты эксперимента

На рис. 2 приведена кинетика затухания фотолюминесценции LBO и LTB в различных спектральных интервалах. Для обоих кристаллов при селективном фотовозбуждении выделены три экспоненциальных компонента $(au_{f1} < 1, au_{f2} = 8.5$ и $au_s > 250\,\mathrm{ns})$ с различным соотношением начальных интенсивностей (табл. 2, рис. 2). Первый компонент (τ_{f1}) самый интенсивный. Он практически повторяет импульс возбуждения и его параметры получены методом интеграла свертки при учете профиля импульса возбуждения и аппаратной функции системы регистрации. Постоянная времени третьего компонента (τ_s) превышает период следования возбуждающих импульсов, поэтому при данных измерениях он проявляет себя в виде постоянного уровня (пьедестала). Его процентный вклад в полную светосумму под кривой затухания люминесценции оценен по методике [26] и указан на рис. 2. Ранее этот компонент был обнаружен в микро- и миллисекундной областях кинетики затухания катодолюминесценции кристаллов LTB [11] и LBO [27].

Спектры ФЛ кристаллов LBO и LTB при 9.6 и 295 К сосредоточены в области 2-5 eV, в ВУФ области спектра люминесценция не обнаружена. При 9.6 и 295 К в спектрах ФЛ с временным разрешением LTB (рис. 3) наблюдаются частично перекрывающиеся, но хорошо разрешенные полосы быстрого (σ) и медленного (π) компонентов. Спектр СФЛ совпадает с *п*-полосой, а *σ*-полоса сдвинута относительно *п*-полосы в сторону низких энергий на $\Delta E_m = 400 \,\mathrm{meV}$ при 300 и 300–320 meV при 9.6 К (рис. 3). В отличие от σ -полосы π -полоса не испытывает заметных изменений при варьировании температуры образца или энергии возбуждающих фотонов E_{ex}. Вклад медленного компонента в общую светосумму в области максимума σ -полосы является преобладающим. В то же время по интенсивности доминирует первый быстрый компонент (τ_{f1}) (рис. 2). Спектр ФЛ LBO при 9.6 К представлен широкой неэлементарной полосой, положение максимума которой близко к таковому для *π*-полосы LTB, но спектральный профиль имеет отличия — выделены три спектральных интервала: 3.0-3.2 (I), 3.6-3.8 (II) и 4.2-4.4 eV (III), соотношение интенсивностей в которых определяет реальный профиль полосы ФЛ LBO (рис. 4). При 9.6 К профили полос медленного компонента люминесценции LBO в области $E_{ex} = 8 - 10 \, \text{eV}$ совпадают между собой и близки к таковым для π -полосы LTB (рис. 3, 4), а при $E_{ex} = 30 \text{ eV}$ происходит длинноволновый сдвиг спектра ФЛ на 100 meV. В то же время при 295 К для всех Eex имеет место коротковолновый сдвиг на 150 meV (рис. 4). Кривая 5 на рис. 4 представляет собой разность нормированных полос спектра ФЛ медленных компонентов LBO при 295 и 9.6 К с учетом коротковолнового сдвига на 150 meV. Спектр ФЛ быстрого компонента имеет похожую неэлементарную полосу, смещенную на ~ 60 meV в сторону высоких энергий. С ростом E_{ex} происходит сдвиг центра тяжести этой полосы в низкоэнергетическую область, а при 295 К наблюдается ее длинноволновое уширение до совпадения с профилем этой же полосы при 9.6 К (рис. 4).

Таблица 2. Относительные амплитуды быстрых компонентов кинетики затухания фотолюминесценции LBO при 9.6 К

E., eV	E_m, eV		
<i>Le</i> _{<i>i</i>} , <i>c</i> ,	3.26	3.87	4.59
8.0 9.5	3/0.02 15/1.1	7/0.04 10/2.4	6/0.03 16/5.5
30.0	27/0.5	13/0.5	26/1.2

Примечание. E_m — полоса люминесценции, E_{ex} — энергия возбуждающих фотонов. В числителе указано отношение I_{01}/I_{0s} , в знаменателе — I_{02}/I_{0s} , где I_{01} , I_{02} , I_{0s} — начальные интенсивности компонентов с постоянными времени τ_{f1} , τ_{f2} и τ_s соответственно.

Рис. 2. Кинетика затухания фотолюминесценции LBO (*a*) и LTB (*b*) в выделенных полосах эмиссии E_m при температурах 295 (*1*) и 9.6 К (*2*) для различных энергий возбуждающих фотонов E_{ex} . Для LBO $E_m = 3.87$ eV. Проценты указывают долю медленного компонента в общей светосумме.

Кинетика ФЛ LBO при 9.6 К также зависит от E_{ex} . Вклад медленного компонента в общую светосумму является доминирующим (рис. 2). При $E_{ex} = 8 \text{ eV}$ присутствует первый быстрый компонент, вклад которого при $E_{ex} = 30 \text{ eV}$ несколько возрастает. Примечательно, что при $E_{ex} = 9.5-10 \text{ eV}$ происходит эффективное селективное возбуждение второго быстрого компонента ($\tau = 8.5 \text{ ns}$), что обусловливает существенный рост его вклада в светосумму (рис. 2). Однако в спектрах ФЛ при этом заметных изменений не происходит, а при 295 К второй быстрый компонент не проявляется.

Подытоживая результаты по ФЛ LBO, отметим, что длинноволновая полоса ФЛ (области I и II) сопоставима с таковой для LTB. В то же время коротковолновая

полоса ФЛ LBO (область III) имеет рекомбинационную природу, так как ее интенсивность зависит от температуры, она эффективно возбуждается также рентгеновским излучением и проявляется в термостимулированной люминесценции (ТСЛ).

На рис. 5,6 представлены спектры возбуждения быстрого и медленного компонентов, нормированные по интенсивности на коротковолновой границе CB, без коррекции на отражение. При 9.6 К возбуждение медленного компонента люминесценции LTB начинается около 7.5 eV (рис. 5), CB имеет максимум при $E_{ex} = 8.2 \text{ eV}$ (*FWHM* = 1.1 eV), затем следует интенсивный спад со слабо выраженной особенностью в области 10–12 eV. Это вполне согласуется с данными [20] для стационарной

Рис. 3. Спектры люминесценции с временны́м разрешением, измеренные во временны́х окнах $\Delta t_2(a)$ и $\Delta t_1(b)$ для кристаллов LTB при 9.6 (1, 2) и 295 К (3) и энергиях возбуждающих фотонов 30 (1), 8.3 (2) и 10 eV (3).

ФЛ LTB. Спектр возбуждения быстрого компонента отличается присутствием "плеч" при 7.8 и около 10 eV. При 295 К профили CB быстрого и медленного компонентов в области 7–10 eV совпадают и соответствуют профилю CB быстрого компонента при 9.6 К (рис. 6). В области 11–20 eV наблюдается рост эффективности возбуждения быстрого компонента с небольшим максимумом при 12–12.5 eV.

Для кристалла LBO при 9.6 К основная неэлементарная полоса CB расположена в области 7.5-11 eV, при этом ее низкоэнергетический край представлен круто возрастающей кривой, которая совпадает с длинноволновым краем фундаментального поглощения (ФЛ) [17,21], а высокоэнергетический край образован плавно спадающей кривой (рис. 5). Выше 11-12 eV эффективность возбуждения почти постоянна и составляет 3-5% от таковой в максимуме. Профиль полосы СВ обоих компонентов содержит особенности при 8.05, 8.8 и 10.2 eV. При этом основной максимум СВ (рис. 5) приходится на 8.05 eV (медленный компонент) и на 8.8 eV (быстрый компонент). При регистрации СВ в различных точках полосы люминесценции интенсивность CB при 8.8 eV изменяется (в условн. ед.) от 1.5 ($E_m = 3.26 \,\mathrm{eV}$) до 2 $(E_m = 3.87 \,\mathrm{eV})$ и до 4 $(E_m = 4.43 \,\mathrm{eV})$. Полоса СВ при 8.8 eV соответствует СВ второго быстрого компонента $(\tau = 8.5 \, \text{ns})$. В отличие от времяразрешенных спектров и кинетики ФЛ спектры возбуждения LBO демонстрируют определенную зависимость от кристаллографической ориентации образца по отношению к электрическому вектору поляризованного возбуждающего излучения. Из рис. 5 следует, что CB LBO $\perp X$ и LBO $\perp Z$ состоят из одних и тех же элементарных составляющих, но различаются соотношением интенсивностей между ними. При 295 К CB LBO \perp Z качественно напоминает таковой для 9.6 К, но сдвинутый в область более низких энергий примерно на 150-200 meV. Выше 9.5 eV между спектрами возбуждения быстрого и медленного компонентов обнаружены существенные различия (рис. 6). Для LBO ⊥ X при 295 К CB медленного и быстрого компонентов совпадают между собой, но пик СВ в области 7.5-9 eV уширен до 1.9 eV.

3. Обсуждение результатов

Известно, что верхние состояния ВЗ в оксидах образуются, как правило, из 2*p*-состояний кислорода. В кристаллических полях низкой симметрии происходит

Рис. 4. Спектры люминесценции с временны́м разрешением, измеренные во временны́х окнах Δt_2 (*a*) и Δt_1 (*b*) для кристаллов LTB при 9.6 (*1–3*) и 295 К (*4*) и энергиях возбуждающих фотонов 30 (*1*), 9.5 (*2*), 8.1 (*3*) и 7.75 eV (*4*). Кривая (*5*) представляет собой разность между кривой (*4*) и кривой (*3*), сдвинутой в коротковолновую сторону на 150 meV (пояснения в тексте).

полное расщепление *p*-состояний. При координационном числе 4 одна из *p*-орбиталей оказывается несвзывающего типа (*п*-орбитали). По энергетической шкале такие орбитали занимают самое верхнее положение, формируют потолок ВЗ и определяют динамику релаксированных дырок. В верхней достаточно узкой подзоне дырка может переходить в состояние полярона малого радиуса, который может выступать в роли дырочного ядра АЛЭ. Обычно АЛЭ такого типа эффективно возбуждаются и в рекомбинационных процессах, и фотонами в области края ФП [2,3]. В результате ковалентных эффектов нижняя подзона имеет большую ширину и дисперсию, отличается большим ковалентным вкладом в химическую связь кислород-металл и зачастую отделяется минищелью от верхней подзоны (SiO₂ [28]). Однако этот эффект может быть мал из-за слабости кристаллического поля, сильной гибридизации или других факторов [3]. Так, в Al₂O₃ минищель отсутствует, а в Y₂O₃ обе подзоны перекрываются друг с другом. С состояниями нижней подзоны связывают формирование экситона "молекулярного" типа, который представляет собой возбуждение связи между кислородными лигандами и анионообразующим элементом. Молекулярный экситон (МЭ) обусловлен переходами между различными молекулярными орбиталями анионной группы или оксианиона, т.е. является внутрианионным экситоном. Распад МЭ при взаимодействии с дефектами может приводить к околодефектному свечению [2], однако в рекомбинационных процессах, например в ТСЛ, полосы люминесценции МЭ, как правило, не возбуждаются [3,5]. Усложнение ЭЯ ведет к проявлению сильной тенденции к локализации Различия в люминесцентных проявлениях двух ЭB. типов АЛЭ при этом уменьшаются, и может наблюдаться лишь одна полоса люминесценции.

В ряде оксидных кристаллов со сложной кристаллической решеткой обнаружено сосуществование и люминесцентные проявления АЛЭ обоих типов (например, в BeO [1], Al₂O₃ [3,5]), а также ветвление каналов релаксации ЭВ между ними. Исходное нерелаксированное электронное возбуждение при этом содержит в себе два различных состояния: сохраняющийся экситонный компонент и пред-состояния разделяющихся электрона и дырки. В [3] перераспределение интенсивности люминесценции между полосами люминесценции данных АЛЭ отнесли к проявлению динамической нестабильности экситонов. Однако во многих системах доминирует лишь один тип АЛЭ. Так, в У2О3 полосы люминесценции АЛЭ в спектрах ТСЛ не наблюдаются [5], тогда как в CaWO₄ люминесценция АЛЭ эффективно возбуждается в рекомбинационных процессах с участием дефектов решетки [8].

Пик отражения LTB при 8 eV совпадает с узкой интенсивной полосой возбуждения люминесценции и сопоставлен с созданием экситонов [20]. В спектре отражения LBO около 8.0–8.3 eV наблюдается хорошо заметный "горб" и пик при 9 eV (рис. 5), приходящиеся на узкую интенсивную полосу в CB люминесценции. Можно предположить, что в спектрах отражения этих боратов широкий пик или "горб" при 8.0–8.3 eV соответствует созданию нерелаксированных экситонов. Действительно, в сложных низкосимметричных оксидах экситонное поглощение очень часто представлено лишь плечом или "горбом" на длинноволновом краю фундаментального поглощения, но, несмотря на это, экситонные особенности коррелируют с областью наиболее эффективного возбуждения экситонного свечения [5].

Мы считаем, что при возбуждении фотонами в области края фундаментального поглощения в LTB и LBO происходит создание нерелаксированных экситонов e^0 , наиболее вероятными каналами распада которых являются миграция с последующим безызлучательным распадом, автолокализация с последующей излучательной аннигиляцией и диссоциация на электрон и дырку с вероятным участием последних в рекомбинационном процессе. Обсудим эти каналы распада e^0 в свете экспериментальных данных.

Миграция и безызлучательный распад на поверхности обусловливают так называемые поверхностные потери энергии (ППЭ). Форма СВ указывает на экситонные механизмы передачи энергии в LTB и LBO, что характерно для систем, где свечение носит экситонный характер либо где экситоны являются промежуточным звеном при передаче энергии центру свечения. При температуре 9.6 К люминесценция в LTB и LBO возбуждается преимущественно в экситонной области (рис. 5) и имеет четко выраженный интенсивный пик. Падение эффективности возбуждения люминесценции при энергиях фотонов выше 10-12 eV в этом случае объясняется наличием ППЭ вследствие существенного возрастания коэффициента оптического поглощения. Характерно, что начинающийся с 8 eV рост в спектрах отражения приходится именно на пик в СВ люминесценции (рис. 5). Зависимость амплитуды и формы пика CB при 8-9 eV от ориентации кристалла обусловлена модуляцией СВ оптическим поглощением. При сравнении спектров отражения LBO $\perp Z$ и LBO $\perp X$ (рис. 5) очевидно, что оптическое поглощение для LBO \perp Z в этой области должно быть выше. Дополнительным аргументом в пользу этого является отсутствие видимых различий в спектрах люминесценции LBO $\perp X$ и LBO $\perp Z$ при фотовозбуждении поляризованным синхронным излучением. Более детальное обсуждение этого будет проведено при анализе спектров оптических констант в части 2. При наличии активаторов возможна передача энергии центрам свечения либо образование околодефектного экситона с последующей его релаксацией и излучательным распадом.

Вторым каналом распада экситона являются автолокализация и излучательный распад АЛЭ. Результаты данной работы в совокупности с литературными данными по LTB [11,20] и LBO [21,22], полученными ранее, выявили характерные особенности широкополосной коротковолновой люминесценции этих кристаллов: достаточно высокий квантовый выход; большой стоксов

Рис. 5. Спектры возбуждения быстрого (1) и медленного (2) компонентов люминесценции при 3.87 eV кристаллов LTB (*a*), LBO-Z (*b*) и LBO-X (*c*) при 9.6 K, спектры отражения (3) кристаллов LBO-Z (*b*) и LBO-X (*c*). Для сопоставления приведены спектры отражения (4) кристаллов LTB из [16]. Стрелка указывает положение длинноволнового максимума в спектре $\varepsilon_2(E)$.

сдвиг; отсутствие селективных полос возбуждения в области прозрачности; наличие в кинетике компонента с экспоненциальным законом затухания; эффективное возбуждение в области предполагаемого экситонного поглощения; "замораживание" эффективной передачи энергии дефектам решетки. Как известно, таким набором свойств обладают АЛЭ в щелочно-галоидных кристаллах (ЩГК) [29] или в широкозонных низкосимметричных оксидах, например, в BeO [1] и Al₂O₃ [30]. Это дает основания полагать, что широкие полосы люминесценции в кристаллах LTB и LBO обусловлены излучательной аннигиляцией релаксированных электронных возбуждений — автолокализованных экситонов, распад которых обусловливает люминесценцию в области 3.6 eV. Высокая эффективность возбуждения этой люминесценции непосредственно на краю ФП указывает на то, что АЛЭ образуется в результате релаксации экситона e^0 . При селективном создании e⁰ выход свечения АЛЭ в LTB и LBO не изменяется при понижении температуры от 295 до 9.6 К. Это подтверждают прямые измерения температурной зависимости стационарной ФЛ LBO в области 8–500 К [21]. Отсутствие "замораживания" люминесценции АЛЭ при низких температурах предполагает отсутствие барьера для автолокализации или его малую величину, что типично для многих низкосимметричных оксидов со сложной решеткой, например, для Al₂O₃ [30]. Отрицательный результат поиска люминесцентных проявлений нерелаксированных экситонов, полученный в настоящей работе и в [21,22], вполне с этим согласуется.

Диссоциация экситона $e^0 \rightarrow e^- + h^+$ может происходить как путем автоионизации, что имеет место при низких температурах, так и в результате термически активированной диссоциации при более высоких температурах. Автоионизация е⁰ при низких температурах может быть следствием смешанного характера экситонных состояний (см., например, [3]), что обусловливает динамическую нестабильность экситона и его распад с рождением свободных электрона и дырки. Разделенные носители заряда могут быть захвачены на соответствующих центрах захвата, либо могут излучательно рекомбинировать на комплементарных центрах рекомбинации. Процесс термодиссоциации требует энергии активации Е_d и предполагает нарастание интенсивности соответствующей рекомбинационной люминесценции по закону $\exp(-E_d/k_BT)$. В области создания электронов и дырок (выше 10-12 eV) эффективность возбуждения

Рис. 6. Спектры возбуждения быстрого (1) и медленного (2) компонентов люминесценции в полосе 3.87 eV кристаллов LTB (*a*), LBO-Z (*b*) и LBO-X (*c*) при 295 К.

медленного компонента при 9.6 К составляет примерно 5 (LBO) и 10% (LTB) от таковой при возбуждении в экситонной области. При 295 К эффективность возбуждения люминесценции медленного компонента LBO выше 10 eV существенно возрастает (рис. 6) — до 50-150% от таковой при возбуждении в максимуме экситонной области. Характерно, что при этом наблюдается монотонный рост эффективности возбуждения, достигающий максимума около 16 eV. Такая форма CB люминесценции типична для случая возбуждения рекомбинационных процессов с участием дефектов [29]. Проявление на длинноволновом крае СВ экситонного пика при 295 К является следствием термической диссоциации нерелаксированного экситона на электрон и дырку, которые вносят свой вклад в возбуждение рекомбинационного свечения. Принципиальным является тот экспериментальный факт, что при температурах выше 80 К коротковолновая часть полосы люминесценции LBO наблюдается в спектрах ТСЛ [21], т.е. эффективно возбуждается в результате процессов электронной и дырочной рекомбинации на собственных дефектах решетки: дырочном О⁻ и электронном В²⁺-центрах. Пики ТСЛ, соответствующие распаду этих центров, проявляются при 240 и 130 К соответственно [22]. При нагреве от 130 до 240 К квантовый выход рентгенолюминесценции (РЛ) возрастает в 20-25 раз с характерной энергией активации 65 meV [22]. При температурах ниже 130 К эти дефекты являются эффективными центрами захвата для электронов и дырок, разгорание РЛ вследствие этого не наблюдается. В свете развиваемых представлений эта величина 65 meV может быть сопоставлена с энергией активации процесса термической диссоциации экситона. Отсутствие в СВ LTВ при комнатной температуре рекомбинационной составляющей может быть связано как с недостаточной концентрацией актуальных дефектов, так и с большей температурной стабильностью люминесценции LTB. Известно, что интенсивность ТСЛ неактивированных кристаллов LTB чрезвычайно низка [31], а термическое тушение РЛ наступает при температурах выше 320 К [11].

На рис. 7 представлена диаграмма адиабатических кривых потенциальной энергии, соответствующих двум нижним состояниям АЛЭ в боратах лития (синглетный и триплетный уровни), с которых происходят излучательные переходы. Согласно этой диаграмме, синглетный АЛЭ имеет минимум с конфигурационной координатой Q_2 , которая несколько больше таковой Q_1 для минимума триплетного уровня. Разница в положении максимумов полос свечения синглетного и триплетного АЛЭ будет определяться выражением $\Delta E_m = \delta E - \Delta E$. Определение δE и ΔE дано на рис. 7, и в зависимости от их численных значений величина ΔE_m может быть как положительной, так и отрицательной. Так, для LBO $\Delta E_m = -(300-400 \, {\rm meV})$, а для LBO $\Delta E_m = +(50-60 \text{ meV})$. Величина расщепления δE в ЩГК обычно составляет несколько десятков meV [26], что сопоставимо с ΔE_m в LBO. Можно предположить,

Рис. 7. Схематическая диаграмма адиабатических потенциальных кривых для АЛЭ в боратах лития.

что в LBO, в отличие от LTB ΔE_m мало и различия в релаксации решетки для синглетного и триплетного АЛЭ являются незначительными. Примечательно, что профиль кинетики затухания люминесценции АЛЭ в LTB и LBO похож на таковой для люминесценции АЛЭ в NaBr, NaI и молекулярных кристаллах благородных газов. В то же время в LTB, так же как и в NaBr и NaI [26], синглетный компонент проявляется в спектре с длинноволновой стороны от триплетного, а в LBO, как и в кристаллах благородных газов [32], — ситуация обратная.

Происхождение второго быстрого компонента с $\tau_{f2} = 8.5$ ns, возбуждаемого в полосе CB с максимумом при 8.8 eV, может быть связано с проявлением в LBO еще одного типа нерелаксированного экситона, который возбуждается в селективной полосе при 8.8 eV. Отметим, что спектр люминесценции при этом не претерпевает изменений, что свидетельствует об идентичности финальных стадий излучательной релаксации ЭВ. В таком случае τ_{f2} может быть обусловлена процессом трансформации энергии экситона, возбуждаемого при 8.8 eV. Для низкосимметричных оксидов такая ситуация не удивительна. Например, в SiO₂ различают не менее трех видов экситонов, отличающихся энергиями фотовозбуждения и подвижностью [28].

Таким образом, впервые в широких спектральной и температурной областях проведены измерения кинетики затухания фотолюминесценции с субнаносекундным

временным разрешением, спектров ФЛ с временным разрешением, времяразрешенных спектров возбуждения ФЛ и спектров отражения кристаллов LBO и LTB при селективном фотовозбуждении синхротронным излучением. На основе полученных экспериментальных данных выявлено сходство в динамике электронных возбуждений этих кристаллов, заключающееся в создании нерелаксированного экситона молекулярного типа, основными каналами распада которого являются миграция с последующим безызлучательным распадом, а также автолокализация и диссоциация; установлен собственный характер коротковолновой люминесценции LBO и LTВ в области 3.5 eV, обусловленный излучательной аннигиляцией автолокализованного экситона; выделены σ и π -полосы свечения АЛЭ, обусловленные синглетными и триплетными излучательными переходами; на основе модели адиабатических кривых потенциальной энергии объяснены длинноволновый (LTB) и коротковолновый (LBO) сдвиги *о*-полосы АЛЭ относительно спектрального положения *π*-полосы; выделена полоса рекомбинационной люминесценции LBO. Результаты исследования спектров отражения, спектров оптических констант и процессов фотонного умножения в области энергий до 40 eV будут приведены во второй части данной работы.

Список литературы

- И.Н. Огородников, В.Ю. Иванов, А.В. Кружалов. ФТТ 36, 11, 3287 (1994).
- В.Г. Кронгауз, О.Я. Манаширов, В.Б. Михитарян. Письма в ЖТФ 15, 12, 79 (1989).
- [3] А.И. Кузнецов, В.Н. Абрамов, В.В. Мюрк, Б.Р. Намозов. Тр. ИФ АН ЭССР, 63, 19 (1989).
- [4] R.A. Evarestov, A.N. Ermoshkin, V.A. Lovchikov. Phys. Stat. Solid. (b) 99, 387 (1990).
- [5] V. Mürk, B. Namozov, N. Yaroshevich. Radiat. Measurem. 24, 4, 371 (1995).
- [6] V. Mürk, N. Yaroshevich. J. Phys.: Condens. Matter. 7, 5857 (1995).
- [7] R. Grasser, A. Scharmann, K.-R. Strack. J. Lumin. 27, 263 (1982).
- [8] V. Mürk. Material Science Forum. 239–241, 537 (1997).
- [9] С.В. Радаев, Л.А. Мурадян, Л.Ф. Малахова, Я.В. Бурак, В.И. Симонов. Кристаллография. 34, 6, 1400 (1989).
- [10] С.В. Радаев, Н.И. Сорокин, В.И. Симонов. ФТТ 33, 12, 3597 (1991).
- [11] О.Т. Антоняк, Я.В. Бурак, И.Т. Лысейко, Н.С. Пидзырайло, З.А. Хапко. Оптика и спектроскопия 61, 3, 550 (1986).
- [12] I.N. Ogorodnikov, A.V. Porotnikov, V.A. Pustovarov, A.V. Kruzhalov. J. Lumin. 72–74, 703 (1997).
- [13] Young-Nian Xu, W.Y. Ching. Phys. Rev. B41, 8, 5471 (1990).
- [14] R.H. French, J.W. Ling, F.S. Ohuchi, C.T. Chen. Phys. Rev. B44, 16, 8496 (1991).
- [15] А.Б. Соболев, А.Ю. Кузнецов, И.Н. Огородников, А.В. Кружалов. ФТТ 36, 5, 1517 (1994).
- [16] Я.В. Бурак, Я.О. Довгий, И.В. Китык. ФТТ 31, 9, 275 (1989).
- [17] А.Ю. Кузнецов, Л.И. Исаенко, А.В. Кружалов, И.Н. Огородников, А.Б. Соболев. ФТТ 41, 1, 57 (1999).

- [18] Jun Li, Chun-gang Duan, Zong-quan Gu, Ding-sheng Wang. Phys. Rev. B57, 12, 6925 (1998).
- [19] I.N. Ogorodnikov, A.Yu. Kuznetsov, A.V. Kruzhalov, V.A. Maslov. Radiat. Eff. Defect. Solid. 136, 233 (1995).
- [20] В.Н. Колобанов, Дж. Бекер, С. Доунс, Б.И. Заднепровский, И.А. Каменских, А. Карл, В.В. Михайлин, В.А. Нефедов, М. Рунне, Д. Тихан, И.Н. Шпиньков, Г. Циммерер. Твердотельные детекторы ионизирующих излучений: сб. тез. докл. 1-го всероссийского симпозиума ТТД-97. Екатеринбург (1997). С. 94.
- [21] I.N. Ogorodnikov, E.A. Radzhabov, L.I. Isaenko, A.V. Kruzhalov. In: Excitonic Processes in Condensed Matter / Ed. by R.T. Williams, W.M. Yen. PV 98-25, p. 426–431. The Electrochemical Society Proceeding Series, Pennington, NJ (1998).
- [22] И.Н. Огородников, Е.А. Раджабов, Л.И. Исаенко, А.В. Кружалов. ФТТ 41, 2, 223 (1999).
- [23] Я.В. Бурак, Я.О. Довгий, И.В. Китык. Оптика и спектроскопия 69, 5, 1183 (1990).
- [24] Tian-Jie Chen, R. Tao, J.C. Rife, W.R. Hunter. J. Opt. Soc. Amer. B: Optical Phys. 15, 1, 47 (1998).
- [25] T. Möller, G. Zimmerer. Physica Scripta. T17, 177 (1987).
- [26] T. Matsumoto, T. Kawata, A. Miyamoto, K. Kan'no. J. Phys. Soc. Jpn. 61, 11, 4229 (1992).
- [27] И.Н. Огородников, А.В. Поротников, А.В. Кружалов, В.Ю. Яковлев. ФТТ, 40, 11, 2008 (1998).
- [28] А.Р. Силинь, А.Н. Трухин. Точечные дефекты и элементарные возбуждения в кристаллическом и стеклообразном SiO₂. Зинатне, Рига (1985). 244 с.
- [29] Ch.B. Lushchik. Excitons. / Ed. by E. Rashba, M. Sturge. Publ. Conf., North-Holland. (1982). P. 505.
- [30] Б.Р. Намозов, М.Э. Фоминич, В.В. Мюрк, Р.И. Захарченя. ФТТ 40, 5, 910 (1998).
- [31] R. Komatsu, T. Sugawara, K. Sassa, N. Sarukura, Z. Liu, S. Izumida, Y. Segawa, S. Ida, T. Fukuda, K. Yamanouchi. Appl. Phys. Lett. 70, 26, 3492 (1997).
- [32] G. Zimmerer. Proc. Int. Scool of Phys. "Enrico Fermi", cource 96, Verenna. 1985 / Ed. by M.N. Grassano, N. Terzi. North-Holland, Amsterdam (1987). P. 37.