Транспортные свойства композитов ВТСП + Ва(Pb,Met)O₃ в зависимости от электрических и магнитных свойств несверхпроводящих ингредиентов

© М.И. Петров, Д.А. Балаев, С.В. Оспищев, К.С. Александров

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: smp@iph.krasnoyarsk.su

(Поступила в окончательном виде 26 октября 1999 г.)

Приготовлены композиты, моделирующие сеть слабых металлических связей, состоящие из классического ВТСП со структурой 1–2–3 и металлооксида BaPbO₃ с внедренными в него примесями Sn, Ni и Fe. Приведены экспериментальные результаты резистивных, магнитных и мессбауэровских исследований несверхпроводящих компонентов BaPb_{0.9}Met_{0.1}O₃. Исследованы транспортные свойства композитов ВТСП + BaPb_{0.9}Met_{0.1}O₃. Наблюдается подавление сверхпроводящих свойств композитов как при уменьшении длины свободного пробега носителей в несверхпроводящих ингредиентах с примесями олова, так и вследствие дополнительного взаимодействия магнитных моментов примесей (Fe, Ni) со спином носителей сверхтока. Экспериментальные температурные зависимости критического тока композитов проанализированы в рамках теории де Жена для структур сверхпроводник–нормальный металл–сверхпроводник.

Работа выполнена при частичной финансовой поддержке Гранта молодых ученых Сибирского отделения РАН за 1998–1999 гг.

В работе [1] нами было экспериментально показано, что компоненты ВТСП + ВаРbO₃ адекватны сети слабых S-N-S-связей (S — сверхпроводник, N — нормальный металл) в "чистом" пределе. Действительно, длина свободного пробега l в ВаРbO₃ существенно больше длины когерентности ξ_0 ВТСП, и этим объясняется успешное описание транспортных свойств этих композитов теорией [2], учитывающей в "чистом" пределе и туннелирование, и эффект близости, и андреевское отражение. Однако степень слабой связи в S-N-S-структуре можно менять варьируя не только эффективную протяженность N-прослойки (что было предметом исследования в [1,3]), но и длину свободного пробега носителей в нормальном металле N.

Для низкотемпературных сверхпроводников в работе [4] детально исследовались зависимости критического тока S-N-S-перехода как в зависимости от протяженности N-прослойки, так и от длины свободного пробега носителей в ней. Длина свободного пробега и характер взаимодействия примесь–куперовская пара изменялись внедрением примесей в N-металл, причем примеси были как немагнитные, так и парамагнитные. Было получено совпадение теории, построенной на базе БКШ с экспериментом, однако не были измерены и, естественно, не анализировались температурные зависимости критического тока.

По аналогии с работой [4] мы предприняли попытку провести подобное исследование в S-N-S-структурах на основе ВТСП. К сожалению, отсутствие надежной технологии изготовления одиночных переходов заставило нас исследовать композиты ВТСП + нормальный металл. Как уже отмечалось, такие композиты адекватны сети слабых связей с некой функцией распределения по

геометрическим параметрам S-N-S-переходов — звеньев этой цепи. Однако, если технология приготовления композитов выдержана с достаточной повторяемостью, логично ожидать воспроизводимости функции распределения и все изменения транспортных свойств связать со взаимодействием носителей сверхтока при туннелировании их через металл с различными примесями.

Специфические трудности, возникающие при синтезе композитов на основе ВТСП, частично рассмотрены в [1,3]. Одна из них — окисление *N*-металла — преодолена использованием металлооксида BaPbO₀, который слабо взаимодействует (в химическом смысле) с ВТСП со структурой 1-2-3 [1,3]. В нашей предварительной работе [5] было показано, что внедрение примесей в BaPbO₃ приводит к заметному дополнительному редуцированию сверхпроводящих свойств сети S-N-S-слабых связей в композитах ВТСП + BaPbO₃.

В настоящей работе приведены подробные результаты экспериментального изучения влияния магнитных (Fe, Ni) и немагнитных (Sn) примесей, внедренных в BaPbO₃ на транспортные свойства композитов BTCП + Ba(Pb,Met)O₃.

1. Синтез и физические свойства несверхпроводящих ингредиентов

Несверхпроводящие компоненты композитов готовились из окислов BaO_2 , PbO, NiO, $Fe_2^{57}O_3$, $Sn^{119}O_2$ при 880° С по керамической технологии. Использование гематита, обогащенного по изотопу Fe^{57} на 90%, позволило контролировать растворимость железа в $BaPbO_3$ с помощью мессбауэровской спектроскопии (рис. 1). Видно, что после двухнедельного отжига с промежуточными по-

Рис. 1. Мессбауэровские спектры $BaPb_{0.9}Fe_{0.1}^{57}O_3$. *а* — после первой недели синтеза, *b* — после второй недели синтеза, *с* — после третьей недели синтеза.

Рис. 2. Экспериментальные зависимости $\rho(T)$ несверхпроводящих компонентов композитов в полулогарифмическом маснитабе. I — BaPbO₃, 2 — BaPb_{0.9}Sn_{0.1}O₃, 3 — BaPb_{0.9}Ni_{0.1}O₃, 4 — BaPb_{0.9}Fe_{0.1}O₃.

молами исчез шестилинейчатый спектр гематита $Fe_2^{57}O_3$, что указывает на его "растворение" в BaPbO₃. Для надежности синтез был продлен еще на неделю. Синтез BaPb_{0.9}Ni_{0.1}O₃ и BaPb_{0.9}Sn_{0.1}O₃ был идентичен синтезу железосодержащего BaPbO₃. "Растворение" олова в BaPbO₃ также контролировалось с помощью эффекта Meccбауэра по изотопу Sn¹¹⁹. Отсутствие спектра, характерного для SnO₂, свидетельствует о полном "растворении" олова в BaPbO₃. Этот результат неудивителен, так как Sn⁴⁺ является электронным аналогом Pb⁴⁺. Рентгеноструктурный анализ, проведенный на образцах BaPb_{0.9}Met_{0.1}O₃, показал фазу BaPbO₃ со структурой перовскита; никаких посторонних рефлексов в пределах точности рентгеноструктурного анализа обнаружено не было.

На рис. 2 приведены температурные зависимости удельного электросопротивления $\rho(T)$ образцов ВаPb_{0.9}Met_{0.1}O₃ и BaPbO₃, измеренные четырехзондовым методом. При частичном замещении свинца кривые $\rho(T)$ становятся слабозависящими от температуры (а для образца BaPb_{0.9}Fe_{0.1}O₃ наблюдается некоторое увеличение ρ при понижении T), а абсолютные значения ρ увеличиваются, в наибольшем случае — для примесей железа (см. таблицу). Это не противоречит классическому механизму взаимодействия носителей заряда с магнитными и немагнитными примесями [6].

Некоторые параметры несверхпроводящих ингредиентов композитов

<i>N</i> -металл	$\mu,\ \mu_0$	$\begin{array}{c}\rho\left(5\mathrm{K}\right),\\\Omega\cdot\mathrm{cm}\end{array}$	$R_N,$ $\Omega \cdot \mathrm{cm}$	<i>l</i> , Å	T_{pb}, \mathbf{K}
BaPbO ₃		0.0005	0.0022	> 100	0
$BaPb_{0.9}Sn_{0.1}O_3$	_	0.019	0.0089	4.4 ± 1.0	0
BaPb _{0.9} Ni _{0.1} O ₃	0.13	0.026	0.0098	4.0 ± 0.5	20 ± 5
BaPb _{0.9} Fe _{0.1} O ₃	3.6	3.0	0.0524	4.0 ± 0.5	50 ± 5

Примечание. μ — магнитный момент, приходящийся на атом примеси, ρ — удельное электросопротивление, R_N — нормальное сопротивление композитов с соответствующими ингредиентами при T = 4.2 К. Значения l и T_{pb} получены из условия наилучшего описания экспериментальных $J_C(T)$ композитов в рамках теории де Жена, см. п. 3.

На рис. З приведены результаты магнитных измерений образцов с примесями Ni и Fe. Измерения проводились на вибрационном магнетометре [7]. Сопоставлением экспериментальной кривой намагничивания M(H) с функцией Бриллюэна были определены магнитные моменты, приходящиеся на один атом примеси. Наилучшая подгонка дает значения $3.6 \,\mu s$ для ионов Fe и $0.13 \,\mu s$ для ионов Ni (μs — магнетон Бора). Для ионов железа такое значение несколько ниже номинального для Fe⁴⁺ [8] в предположении, что катионы железа замещают катионы свинца в структуре BaPbO₃. Что касается никеля, то можно предположить, что Ni также занимает позиции свинца в BaPbO₃ и его формальная валентность будет равна +4. В этом случае электронная конфигурация катиона Ni⁴⁺ была бы $3d^6$. При такой электронной

Рис. 3. Магнитные изменения несверхпроводящих компонентов композитов BaPb_{0.9}Fe_{0.1}O₃ (m = 96 mg) (1)' и BaPb_{0.9}Ni_{0.1}O₃ (m = 112 mg) (2)'. a — полевые при T = 4.2 K, b — температурные (при H = 3 kOe) зависимости намагниченности M. Сплошные кривые — расчет по функции Бриллюэна при J = 1 для BaPb_{0.9}Fe_{0.1}O₃ (1) и J = 2 для BaPb_{0.9}Ni_{0.1}O₃ (2).

конфигурации низкоспиновое состояние (высокоспиновое состояние Ni⁴⁺, судя по литературе [9], никем не наблюдалось) дает нулевое значение спинового магнитного момента. Однако экспериментальное значение равно 0.13 μ_B . Возможной причиной ненулевого магнитного момента Ni может быть ковалентное подмешивание в 3*d*-уровни никеля. Таким образом, и для железа, и для никеля, находящихся в металлооксиде, наблюдается отклонение магнитного момента от номинального, что контрастирует с магнитодиэлектриками, для которых это согласие гораздо лучше [8].

Намагниченность образцов падает с ростом температуры практически по закону 1/T, что указывает на парамагнетизм соединений (рис. 3). Отсутствие гистерезиса на полевых зависимостях свидетельствует в пользу этого утверждения. Отклонение от линейного закона в области низких температур на зависимости $M^{-1} = f(T)$ приводит к необходимости учета парных обменных взаимодействий, однако настоящая работа посвящена изучению не деталей магнетизма этих соединений, а влиянию магнитных центров рассеяния на транспортные свойства композитов с этими соединениями.

2. Приготовление и транспортные свойства композитов ВТСП + Ва(Pb,Met)O₃

Синтез сверхпроводящего ингредиента композитов — Y_{0.75}Lu_{0.25}Ba₂Cu₃O₇ — был проведен по стандартной керамической технологии. Композиты были приготовлены методом быстрого спекания [1,3]. Тщательно перемешанные ингредиенты будущих композитов в пропорции 85 vol.% ВТСП и 15 vol.% ВаРb_{0.9}Met_{0.1}O₃ (Met = Sn, Ni, Fe) прессовались в виде таблеток, помещались на предварительно разогретые лодочки и вносились в печь, разогретую до температуры 950°С, на 5 min. Поскольку при такой температуре ВТСП со структурой 1-2-3 неизбежно теряет кислород, для восстановления стехиометрии по кислороду композитные образцы переносились из "высокотемпературной" печи в другую печь с температурой 400°С, где они выдерживались в течение 6 h, что достаточно для насыщения кислородом [1].

Для выяснения влияния примесей различного сорта, находящихся в несверхпроводящем компоненте, на транспортные свойства композитов полученные результаты сопоставлялись с данными, измеренными на "реперном" композите без примесей в BaPbO₂.

Рентгеноструктурный анализ, проведенный на композитах, показал наличие только двух фаз — ВТСП со структурой 1–2–3 и перовскита. Постронних рефлексов в пределах точности рентгеноструктурного анализа обнаружено не было.

Обозначим композитные образцы как S + 15N, S + 15N(Sn10), S + 15N(Ni10), S + 15N(Fe10). Здесь S — сверхпроводник, N — BaPbO₃ без примесей, N(Sn10), N(Ni10), N(Fe10) — BaPb_{0.9}Met_{0.1}O₃ при Met = Sn, Ni, Fe соответственно.

Зависимости намагниченности от температуры M(T) композитов, измеренные в поле 200 Ос, показали нали-

Рис. 4. Экспериментальные ВАХ композитных образцов при T = 4.2 К. 1 - S + 15N, 2 - S + 15N(Sn10), 3 - S + 15N(Ni10), 4 - S + 15N(Fe10).

чие одной сверхпроводящей фазы при температуре ниже 93.5 К. Вид зависимостей M(T) подобен приведенным в работе [10] M(T) композитов ВТСП + ВаРbO₂.

Рис. 4 иллюстрирует влияние различного сорта примесей в BaPbO₃ на вольт-амперные характеристики (BAX) композитов при T = 4.2 К. ВАХ измерялись четырехзондовым методом, для эффективного отвода тепла образец помещался непосредственно в гелиевую ванну (подробнее см. в [11,12]). ВАХ на рис. 4 характеризуются избыточным током, что характерно для S-N-S-структур [13]. В таблице приведены значения нормального сопротивления композитов R_N , определенные из линейного участка ВАХ при T = 4.2 К. Корреляция значений ρ ингредиентов и R_N очевидна.

Температурные зависимости электросопротивления R(T) композитов, измеренные четырехзондовым методом при транспортном токе $\sim 0.01 \times J_c$ (5 K) (J_c (5 K) критический ток при 5К), приведены на рис. 5 в нормированном виде. Резкий скачок электросопротивления при 93.5 К соответствуют переходу в сверхпроводящее состояние ВТСП-гранул в композите. Неизменность этой температуры для всех композитных образцов указывает на отсутствие диффузии химических элементов из несверхпроводящих ингредиентов в ВТСП-кристталиты. Плавный "хвост" зависимостей R(T) ниже 93.5 К определяется наличием слабых связей [1,3,10,14–16]. Характерная температура, при которой сопротивление композитного образца становится равным нулю, зависит от характера примеси, внедренной в BaPbO₃ (рис. 5). На кривой R(T) композитов с магнитными примесями имеется протяженный по температуре участок ниже *T_c* ВТСП-гранул, в котором сопротивление слабо изменяется с последующим переходом в сверхпроводящее состояние. Подобное поведение R(T) на-

Рис. 5. Экспериментальные температурные зависимости электросопротивления образцов. 1 - S + 15N, 2 - S + 15N(Sn10), 3 - S + 15N(Ni10), 4 - S + 15N(Fe10).

Рис. 6. Экспериментальные температурные зависимости плотности критического тока композитов в полулогарифмическом масштабе. 1 - S + 15N, 2 - S + 15N(Sn10), 3 - S + 15N(Ni10), 4 - S + 15N(Fe10).

блюдалось на сэндвичах YBa2Cu3O7/Pro 7Sro 3MnO3/Ag и YBa₂Cu₃O₇/Pr_{0.7}Sr_{0.3}MnO₃/YBa₂Cu₃O₇ с ферромагнитной прослойкой [14] и также на композитах ВТСП + диэлектрик CuO с магнитными центрами рассеяния (Ni) [15]. По-видимому, взаимодействие пар носителей с магнитными моментами в прослойках ответственно за такое поведение.

Температурные зависимости критической плотности тока $J_c(T)$ композитов, измеренные четырехзондовым методом по стандартному критерию $1 \,\mu V/cm$ [17] (методика подробно описана в работах [1,10]), приведены на рис. 6 Отметим некоторые особенности экспериментальных зависимостей $J_c(T)$. Хотя вид кривых остается примерно одинаковым для всех образцов, абсолютные значения J_c (5 K) композитов сильно зависят от характера примеси (Sn, Ni, Fe), коррелируя с данными по электросопротивлению. При высоких температурах экспериментальные значения $J_c(T)$ становятся исчезающе малыми и при конечной плотности измерительного тока ($\sim 0.01 \times J_c(5 \, \text{K})$) появляется ненулевое падение напряжения (рис. 5, 6).

3. Анализ температурных зависимостей критического тока композитов $BTC\Pi + Ba(Pb, Met)O_3$

Анализ зависимостей $J_c(T)$ композитов ВТСП + ВаРbO₃ [1,10] показал, что композитный образец можно охарактеризовать некой средней геометрической протяженностью слабой связи *d*. Для образцов с 15 vol.% ВаРbO₃ эта величина, оцененная по теории [2], составила ~ 100 Å. Естественно ожидать, что для композитов с примесями в BaPbO₃, приготовленных по такой же технологии и с тем же содержанием несверх-проводящего ингредиента, величина *d* будет той же.

К сожалению, в настоящее время еще не существует микроскопической теории применительно к температурной зависимости критического тока для перехода от "чистого" ($l > d_{\text{eff}}$, где d_{eff} — эффективная протяженность слабой связи [18]) предела к "грязному" ($l \ll d_{\text{eff}}$ [18]), подобно тому, как это было сделано для ВАХ S-N-S-контактов [19,20]. Поэтому мы приведем результаты обработки экспериментальных кривых $J_c(T)$ в рамках теории эффекта близости де Жена [21].

При температурах, не слишком далеких от T_c , критический ток S-N-S-контакта в теории де Жена, согласно [17,22,23], определяется выражением

$$J_c(T) = C(1 - T/T_c)^2 \frac{d/\xi N}{\sinh(d/\xi N)},$$
 (1)

где C — константа, которая зависит от геометрии контакта, а в случае трехмерной сети джозефсоновских контактов с некой функцией распределения геометрических параметров играет роль нормировочного множителя; d — геометрическая протяженность N-прослойки, в случае композитов эта величина является эффективной; ξ_N — длина когерентности в N-металле или глубина проникновения пар в N-металл, определяющаяся для "грязного" N-металла как [17,22]

$$\xi_N = (\hbar V_f l / 6\pi k_B T)^{1/2}, \qquad (2)$$

где \hbar — постоянная Планка, k_B — константа Больцмана, V_f — фермиевская скорость в *N*-металле. Если *N*-прослойка является "чистым" металлом, то ξ_N не зависит от длины свободного пробега и определяется как [22]

$$\xi_N = \hbar V_f / 2\pi k_B T. \tag{3}$$

При описании экспериментальных $J_c(T)$ подгоночными параметрами являются d и l; кроме того, необходимо знать V_f . Лучшее согласие эксперимента с теорией было достигнуто при значении $V_r \approx 1.8 \cdot 10^7$ cm/s, полученном из соотношения $V_f = \hbar 3^{1/3} \pi^{2/3} n^{1/3} m^{-1}$ (m — масса электрона) при $n = 1.4 \cdot 10^{20}$ cm⁻³ для BaPbO₃ по данным работы [24]¹.

Кривая, удовлетворительно описавшая экспериментальную зависимость $J_c(T)$ образца S + 15N (кривая Iна рис. 7) в области температур 55–80 K, вычислена по формулам (3) и (1) при d = 100 Å.

В случае немагнитных примесей расчетная зависимость вычислена по выражениям (2) и (1). Мы добивались наилучшего согласия эксперимента для образца

Рис. 7. Температурные зависимости критического тока. I - S + 15N, 2 - S + 15N(Sn10), 3 - S + 15N(Ni10), 4 - S + 15N(Fe10). Сплошные кривые — подгоночные, построены по теории де Жена, см. текст и таблицу.

S + 15N(Sn10) (кривая 2, рис. 7) и теории в области высоких температур (15–20 К ниже температуры, при которой значения $J_c(T)$ становятся практически равными нулю), варьируя величину длины свободного пробега в выражении (2). Наилучшее согласие было достигнуто при удивительно малом значении 4.4 ± 1 Å. Но простой расчет показывает, что при концентрации олова x = 0.125 наиболее вероятное расстояние между центрами рассеяния (атомами Sn) в BaPb₁. $_x$ Sn_xO₃ будет равно постоянной решетки — 4.268 Å, а при x = 0.1 это расстояние составит 4,6 Å, что близко к полученной оценке l.

Формально можно воспользоваться теорией де Жена и для обработки $J_c(T)$ образцов с магнитными примесями в BaPbO₃, но очевидно (на рис. 7 эти зависимости находятся в области более низких температур), что получатся величины длин свободного пробега, существенно меньшие постоянной решетки, что нефизично. Это следствие того, что в страндартной теории де Жена нет механизма взаимодействия куперовских пар с магнитными моментами *N*-прослойки. Авторы работы [22] предложили, на наш взгляд, оригинальный выход, а именно среднее время жизни пары внутри *N*-прослойки τ модифицируется и, согласно [22], будет равно

$$\tau = \tau + \tau_{pb} = (\hbar/2\pi k_B)(1/T + 1/T_{pb}).$$
(4)

(Обозначения соответствуют работе [22]). Влияние этого механизма на критический ток заключается в подстановке $T + T_{pb}$ вместо T в формулу (3). Кривые 3и 4 на рис. 7, являющиеся наилучшей подгонкой к $J_c(T)$ образцов S+15N(Ni10) и S+15N(Fe10) соответственно, рассчитаны по выражениям (1), (2), (4) при параметрах, указанных в таблице.

¹ В случае замещения Sn \rightarrow Pb из-за того что внешняя электронная конфигурация олова та же, что у свинца, для изменения *n* мало оснований. Изменение *n* при замещении никелем и железом, видимо, будет не больше, чем для BaPb_{1-x}BiO₃ [24-26] и (ввиду слабости зависимости $V_f(n) \sim n^{1/3}$) незначительно скажется на результатах подгонки в таблице.

При низких температурах наблюдается значительное расхождение эксперимента и теории де Жена, проиллюстрированное на рис. 7 для образца S + 15N(Fe10). Это наблюдалось и другими авторами [22,23], что неудивительно, поскольку, как уже отмечалось выше, теория эффекта близости развита для области высоких температур [21,22].

Обобщая результаты, полученные в данной работе, отметим, что магнитные примеси ухудшают транспортные свойства композитов в большей степени, чем немагнитные. Причем это подавление сильнее в случае, когда примесями являются атомы железа с гораздо большим, чем у атомов никеля, магнитным моментом. Для композитов с примесью олова в BaPbO₃ ухудшение сверхпроводящих свойств можно связать только с уменьшением длины свободного пробега носителей в *N*-слое. В случае композитов с магнитными примесями в BaPbO₃ такое редуцирование сверхпроводящих свойств связано с наличием еще одного добавочного механизма разрушения куперовских пар на магнитных моментах примесей вследствие обменного взаимодействия [4].

Этот эффект разрушения куперовских пар примесями может быть связан с неупругими процессами, такими, как магнитное рассеяние в обычных сверхпроводниках *s*-типа. Однако в сверхпроводниках *d*-типа сильное упругое рассеяние может также приводить к эффекту разрушения пар, как указано в работе [23].

Авторы благодарны А.Д. Балаеву за помощь в проведении магнитных измерений и обсуждение результатов работы, О.А. Баюкову за мессбауэровские измерения, А.Д. Васильеву за рентгеноструктурный анализ. Мы также благодарим проф. Кюммеля (Prof. Kümmel, Universität Würzburg, Germany) за интерес к работе. Одни из авторов (Д.А. Балаев) благодарен проф. Никольскому (Prof. Nicolsky, Instituto de Fisica, Universidade Federal do Rio de Janeiro, Brazil) за обсуждение результатов работы.

Список литературы

- M.I. Petrov, D.A. Balaev, S.V. Ospishchev, K.A. Sgaihutdinov, B.P. Khrustalev, K.S. Aleksandrov. Phys. Lett. A237, 85 (1997).
- [2] U. Gunsenheimer, U. Schüssler, R. Kümmel. Phys. Rev. B49, 6111 (1994).
- [3] М.И. Петров, Д.А. Балаев, С.В. Оспищев, К.А. Шийхутдинов, Б.П. Хрусталев, К.С. Александров. ФТТ **39**, *3*, 418 (1997).
- [4] J. Neimeyer, G. von Minngerode. Z. Phisic B36, 57 (1979).
- [5] M.I. Petrov, D.A. Balaev, S.V. Ospishchev, B.P. Khrustalev, K.S. Aleksandrov. Physica C282–287, 2447 (1997).
- [6] А.А. Абрикосов. Введение в теорию нормальных металлов. Наука, М. (1972). 432 с.
- [7] А.Д. Балаев, Ю.В. Бояршинов, М.М. Карпенко, Б.П. Хрусталев. ПТЭ 3, 167 (1985).
- [8] С. Крупичка. Физика ферритов и родственных им окислов.
 Т. 1. Мир, М. (1976). 353 с.

- [9] F.A. Cotton, G. Wilkinson. Advanced Inorganic Chemistry. Vol. 1–3. Jonh Wiley & Song, N.Y.–London–Sidney (1966).
- [10] М.И. Петров, Д.А. Балоев, Б.П. Хрусталев, К.С. Александров. СФХТ 8, 1, 53 (1995).
- [11] M.I. Petrov, S.N. Krivomasov, B.P. Khrustalev, K.S. Aleksandrov. Solid Stat. Commun. 82, 453 (1992).
- [12] M.I. Petrov, D.A. Balaev, D.M. Gohfeld, S.V. Ospishchev, K.A. Shaihudtinov, K.S. Aleksandrov. Physica C314, 51 (1999).
- [13] G.E. Blonder, M. Tinkham, T.M. Klapwijk. Phys. Rev. B25, 4515 (1982).
- [14] G.C. Xiong, G.J. Lian, J.F. Kang, Y.F. Hu, Y. Zhang, Z.Z. Gan. Physica C282–287, 693 (1997).
- [15] М.И. Петров, Д.А. Балаев, К.А. Шайхутдинов, С.Г. Овчинников. ФТТ 40, 8, 1599 (1998).
- [16] A. Gerber, T. Grenet, M. Cyrot, J. Beille. Phys. Rev. Lett. 65, 3201 (1990).
- [17] А. Бароне, Дж. Патерно. Физики и применение эффекта Джозефсона. Мир, М. (1984). 639 с.
- [18] K.K. Likharev. Rev. Mod. Phys. 51, 1, 101 (1979).
- [19] R. Kümmel, B. Huckestein, R. Nicolsky. Solid Stat. Commun. 65, 1567 (1988).
- [20] R. Kümmel, U. Gunsenheimer, R. Nicilsky. Phys. Rev. B42, 3932 (1990).
- [21] P.G. De Gennes. Rev. Mod. Phys. 36, 225 (1964).
- [22] L. Antogonazza, S.J. Berkowittz, T.H. Geballe, K. Char. Phys. Rev. B51, 13, 8560 (1995).
- [23] K. Char. Physica C282–287, 419 (1997).
- [24] K. Kitazawa, A. Katsui, A. Toriumi, S. Tanaka. Solid Stat. Commun. 52, 459 (1984).
- [25] T.D. Thanh, A. Koma, S. Tanaka. Appl. Phys. 22, 205 (1980).
- [26] Д.П. Моисеев, С.К. Уварова, М.Б. Феник. ФТТ 23, 8, 2347 (1981).