ЭПР возбужденного состояния азота в 6H SiC

© Е.Н. Калабухова, С.Н. Лукин*, Е.Н. Мохов**

Институт физики полупроводников Академии наук Украины, 252028 Киев, Украина *Донецкий физико-технический институт Академии наук Украины, 340114 Донецк, Украина **Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: <katia@phisic.kiev.ua>

(Поступила в Редакцию 9 июля 1999 г. В окончательной редакции 12 ноября 1999 г.)

Исследованы спектры ЭПР доноров в компенсированных кристаллах 6H SiC с концентрацией доноров $(N_D - N_A)$ от $8 \cdot 10^{17}$ до $5 \cdot 10^{16}$ сm⁻³ в температурном интервале от 77 до 170 K на частоте 37 GHz. Обнаружено второе парамагнитное состояние азота в карбиде кремния, связанное с его возбужденным 1S(E) состоянием, которое становится парамагнитным после термоионизации донорных электронов с уровня $1S(A_1)$ на уровень 1S(E). В 1S(E) состоянии спектр ЭПР азота представляет собой одиночную линию с анизотропной шириной изза неразрешенной сверхтонкой структуры. Наблюдалась оптическая перезарядка между основным $1S(A_1)$ и возбужденным 1S(E) состоянием азота. Определены величина долин-орбитального расщепления и энергия ионизации донорных электронов с 1S(E) состояния в вышележащие возбужденные состояния для кубических позиций азота. Определены параметры структурного дефекта, присущего компенсированным кристаллам 6H SiC *n*-типа.

Работа поддержана Фондом фундаментальных исследований Министерства по делам науки и технологий Украины (грант № 4.4/15) и "Deutsche Forshungsgemeinschaft" (грант N FKZ: 01 M2971).

В работе [1] было проведено исследование спектров ЭПР доноров в 6H SiC с (N_D-N_A) от $2 \cdot 10^{18}$ до $1 \cdot 10^{16}$ сm⁻³ в широком температурном интервале от 4.2 до 160 K на частоте 9 GHz и при T = 4.2 K на частоте 140 GHz. При высокой температуре в спектре ЭПР наблюдалась одиночная линия (I_{Nk}) , а при низкой температуре спектр состоял из двух триплетов сверхтонких линий ЭПР от азота в двух кубических позициях решетки (I_{k1}, I_{k2}) , совпадающих на частоте 9 GHz и одиночной линии (I_h) от гексагональной позиции азота, совпадающей с центральной линией триплета на частоте 9 Ghz.

При Т = 4.2 К, при концентрации азота $(N_D - N_A) \approx 3 \cdot 10^{17} \,\mathrm{cm}^{-3}$, спектр ЭПР азота насыщался, что дало возможность при увеличении мощности СВЧ в спектре ЭПР обнаружить одиночную линию (I_D) , совпадающую с центральной линией азотного триплета на частоте 9 GHz. Однако выделить линию ID и провести ее исследование в промежуточном температурном интервале не представлялось возможным из-за перекрытия ее с линиями ЭПР азота большой интенсивности. Когда же линии ЭПР азота начинают спадать по интенсивности, в спектре ЭПР вновь появляется одиночная линия, совпадающая с линией ID на частоте 9 GHz. Это дало основание сделать следующее заключение: низкотемпературная линия I_D и высокотемпературная линия I_{Nk} принадлежат к одному и тому же парамагнитному центру, ответственному за второе донорное состояние в карбиде кремния.

Поскольку одиночная линия ЭПР I_{Nk} наблюдалась при более высоких температурах, чем спектр ЭПР азота, был сделан вывод, что эта линия принадлежит донору

с более глубоким уровнем залегания, чем азот. Однако полученная из высокотемпературного спада интенсивности линии I_{Nk} величина ионизации 60 meV, меньшая, чем энергии ионизации азота, не согласовалась со сделанным выводом.

Для установления природы низкотемпературной I_D и высокотемпературной I_{Nk} линий в спектре ЭПР доноров в настоящей работе проведены исследования спектров ЭПР доноров в образцах карбида кремния 6H политипа с концентрацией доноров ($N_D - N_A$) от $8 \cdot 10^{17}$ до $5 \cdot 10^{16}$ сm⁻³ с различной степенью компенсации в температурном интервале от 77 до 170 на частоте 37 GHz. Использование радиоспектрометра ЭПР с более высокой рабочей частотой 37 GHz дало возможность разрешить ЭПР спектры азота от трех неэквивалентных позиций решетки, определить параметры одиночных линий I_D и I_{Nk} , получить доказательства того, что линия I_D , наблюдающаяся при больших уровнях мощности, и линия I_{Nk} , возникающая в спектре ЭПР при высоких температурах, имеют различную природу.

1. Образцы и методика эксперимента

Исследовались компенсированные образцы 6*H* политипа карбида кремния, выращенные методом Лели и сублимационным сэндвич-методом при температуре 1900°С с концентрацией нескомпенсированных доноров $(N_D - N_A)$ от $8 \cdot 10^{17}$ до $5 \cdot 10^{16}$ сm⁻³.

Измерения проводились в температурном интервале от 77 до 170 К на радиоспектрометре ЭПР с рабочей частотой 37 GHz.

Изменение температуры осуществлялось с помощью резистивного нагревателя, установленного на резонаторе. Температура образца измерялась германиевым датчиком. Точность поддержания температуры была не хуже чем 0.3 К. Освещение образца ультрафиолетовым (УФ) светом осуществлялось лампой ДРШ-250 через светофильтр УФС-1. Свет поступал в резонатор через световод, на торце которого устанавливался образец.

2. Температурное поведение спектров ЭПР доноров в 6*H* SiC

На рис. 1 приведен спектр ЭПР доноров в 6*H* SiC, снятый на частоте 37 GHz при T = 77 K, при различных уровнях мощности. При малых уровнях мощности спектр ЭПР состоит их двух спектров от двух кубических позиций азота. С увеличением уровня мощности в спектре ЭПР появляется дополнительная одиночная линия — I_D , которую можно выделить из спектра азота на частоте 37 GHz, с параметрами, приведенными в таблице. Как видно из таблицы, знак анизотропии *g*-фактора дополнительной линии ($g_{\perp} > g_{\parallel}$) противоположен знаку, наблюдаемому для донорных состояний в карбиде кремния, и ширина ее анизотропна. Это дает основание отнести наблюдаемую линию с неразрешенной сверхтонкой структурой (СТС) к структурному дефекту, имеющему акцепторный характер.

Параметры спектров ЭПР доноров в 6H SiC n-типа

Спектры	g_{\parallel}	g_\perp	$A, \Delta H, G$
I_h	2.0048	2.0028	$\Delta H_{\parallel}=2.5$
	± 0.0002	± 0.0002	$\Delta H_{\perp} = 1.8$
I_{k1}	2.0040	2.0026	11.8
	± 0.0002	± 0.0002	
I_{k2}	2.0037	2.0030	12.0
	± 0.0002	± 0.0002	
I_{Nk}	2.0038	2.0028	$\Delta H_{\parallel} = 6.0$
	± 0.0002	± 0.0002	$\Delta H_{\perp} = 4.5$
I_D	2.0020	2.0029	$\Delta H_{\parallel} = 4.0$
	± 0.0002	± 0.0002	$\Delta H_{\perp} = 3.0$

На рис. 2 приведен спектр ЭПР доноров в 6*H* SiC, снятый на частоте 37 GHz в температурном интервале от 77 до 140 К. С повышением температуры триплеты линий ЭПР азота падают по интенсивности и одновременно происходит рост одиночной линии I_{Nk} в центре ЭПР спектра с параметрами, отличными от параметров линии I_D (см. таблицу), что свидетельствует о различной природе I_D - и I_{Nk} -линий.

Проведенный на частоте 37 GHz анализ температурного поведения спектров ЭПР доноров показал, что температурно-чувствительными параметрами являются не только интенсивность и ширина линий ЭПР, но и величина сверхтонкого расщепления. Как показано на рис. 3, с повышением температуры происходит уменьшение интенсивности и уширение линий ЭПР трипле-

Рис. 1. Спектр ЭПР доноров в 6*H* SiC с $(N_D - N_a)$ $\approx 4 \cdot 10^{17}$ сm⁻³ при двух уровнях мощности СВЧ, различающихся на 30 dB: $P_a < P_b$. $\nu = 37$ GHz, T = 77 K, H || с.

Рис. 2. Температурное поведение спектра ЭПР доноров в 6*H* SiC. $(N_D - N_A) \approx 4 \cdot 10^{17} \text{ cm}^{-3} \cdot \nu = 37 \text{ Ghz}, \mathbf{H} \parallel \mathbf{c}.$

Рис. 3. Температурное поведение сверхтонкой структуры спектров ЭПР азота в кубических позициях решетки в 6*H* SiC. $(N_D - N_A) \approx 4 \cdot 10^{17} \text{ cm}^{-3} \cdot \nu = 37 \text{ GHz}, \mathbf{H} \parallel \mathbf{c}.$

тов от кубических позиций азота, а также уменьшение величины их сверхтонкого расщепления. При этом величина СТС сохраняется изотропной. Этот процесс сопровождается появлением одиночной широкой линии I_{Nk} , которая растет по интенсивности и уменьшается по ширине. Достигнув своей максимальной интенсивности и минимальной ширины, линия начинает вести себя, как обычный парамагнитный центр, у которого с повышением температуры сигнал уширяется и падает по интенсивности (см. рис. 2).

Температурно-зависимое поведение сверхтонкого расщепления линий ЭПР азота ранее наблюдалось для состояний азота с малыми величинами долин-орбитальных расщеплений в 6H SiC [2] и 3C SiC [3].

В температурном интервале от 30 до 60 К в 6H SiC для азота в гексагональной позиции решетки и в 3C SiC в температурном интервале от 11 до 40 К происходило уменьшение величин сверхтонкого расщепления азотного триплета с появлением одиночной линии в высокотемпературной области.

Уменьшение величины сверхтонкого расщепления было объяснено термически индуцированным движением электрона из $1S(A_1)$ состояния в ближайшее возбужденное 1S(E) состояние, отделенные величиной долинорбитального расщепления. Из температурных зависимостей сверхтонкого расщепления были определены величины долин-орбитальных расщеплений между $1S(A_1)$ и 1S(E) состоянием азота в кубическом карбиде кремния и для гексагональной позиции азота в 6*H* SiC.

На основании этих данных в [4] было высказано предположение, что такая же картина должна была бы наблюдаться и для кубических позиций азота, но в более высокой температурной области из-за существенно бо́льших их энергий ионизаций и величин долинорбитальных расщеплений. Однако никаких экспериментальных доказательств такого предположения до сих пор не существовало.

Возникновение и температурное поведение ширины I_{Nk} -линии, а также уменьшение величины сверхтонкого расщепления триплетов азота в кубических позициях решетки с повышением температуры может быть объяснено следующим образом.

В температурном интервале от 100 до 140 К происходит термически индуцированные переходы электронов из $1S(A_1)$ синглетного в 1S(E) дублетное состояние азота, имеющего нулевую вероятность для нахождения электрона в области ядра. Это приводит, с одной стороны, к уменьшению величины сверхтонкого расщепления азотных триплетов, соответствующих $1S(A_1)$ состоянию азота, а с другой стороны, к появлению одиночных линий с анизотропной шириной, соответствующих азотным типлетам в 1S(E) состоянии с неразрешенной СТС из-за малой ее величины. На частоте 37 GHz одиночные линии от двух кубических позиций азота совпадают, и в спектре ЭПР наблюдается одна *I_{Nk}*-линия со значением g-фактора средним между g-факторами спектров ЭПР от двух кубических позиций азота в 1S(A1) основном состоянии (см. таблицу). С повышением температуры интенсивность одиночной линии I_{Nk}- растет, а ширина ее и, следовательно, величина неразрешенного СТС достигают минимального значения и наибольшей анизотропии, когда донорные электроны находятся уже в 1S(E)возбужденном состоянии. В таблице приведено минимальное значение ширины *I*_{Nk}-линии при двух ориентациях магнитного поля, полученное при T = 140 К для 6H SiC с $(N_D - N_A) \approx 4 \cdot 10^{17} \text{ cm}^{-3}$. С дальнейшим ростом температуры, начиная с 140 К, происходит уменьшение интенсивности и уширение линии I_{Nk} за счет ионизации донорных электронов с 1S(E) состояния в вышележащие возбужденные состояния или в зону проводимости.

Следует отметить, что температурные интервалы, в которых происходит термоионизация донорных электронов с уровней $1S(A_1)$ и 1S(E), будут изменяться в зависимости от степени компенсации исследуемого кристалла. Так, с повышением степени компенсации ионизация электронов будет происходить при более высоких температурах [1].

Анализ температурных зависимостей величин сверхтонкого расщепления триплетов азота в $1S(A_1)$ и 1S(E)состояниях и ширины I_{Nk} -линии позволили получить ряд энергетических характеристик доноров азота, как в основном, так в возбужденном состояниях.

Рис. 4. Температурная зависимость величины сверхтонкого расщепления (*A*) азота в кубических позициях решетки в 6*H* SiC. Наклон кривой описывается $\exp(-E_D/kT)$ с $E_D = 10$ meV.

Рис. 5. Температурная зависимость ширины ЭПР линии I_{Nk} в 6*H* SiC для **H** || **c**. Три наклона кривой описываются $\exp(-E_D/kT)$ с $E_{D1} = 21$, $E_{D2} = 34$ и $E_{D3} = 60$ meV.

На рис. 4 представлена температурная зависимость величины сверхтонкого расщепления азота в кубических позициях решетки в $1S(A_1)$ состоянии в температурном интервале от 100 до 120 К. Наблюдаемое уменьшение величины сверхтонкого расщепления может быть описано выражением вида

$$A = A_0 (1 - e^{-E_D/kT})$$
(1)

с $E_D = 10 \text{ meV}$, где A_0 — величина сверхтонкого расщепления $1S(A_1)$ состояния и E_D — энергия ионизации электронов с $1S(A_1)$ уровня.

На рис. 5 представлена температурная зависимость ширины I_{Nk} -линии, которая имеет три участка в температурном интервале от 100 до 170 К. В температурном интервале от 100 до 120 К в ширину I_{Nk} -линии основной вклад вносит уширение компонент триплетов азота в 1S(E) состоянии, что проявляется в уширении линии I_{Nk} , тогда как в температурном интервале от 120 до 140 К определяющим становится уменьшение величины сверхтонкого расщепления триплетов азота в 1S(E) состоянии и I_{Nk} -линия начинает сужаться. Два наклона температурной зависимости ширины I_{Nk} -линии описываются $\exp(-E_d/kT)$ с $E_D = 34$ и 21 meV, которые в сумме составляют энергию ионизации электронов с $1S(A_1)$ в 1S(E) состояние, разделенные между собой величиной долин-орбитального расщепления: $E_{v.-0.} = 34 + 21 = 55$ meV. Полученная величина согласуется с величиной долин-орбитального расщепления, определенной из температурных зависимостей интенсивностей линий ЭПР спектров азота в кубических позициях решетки в [1].

Энергия ионизации, полученная из наклона температурной зависимости ширины I_{Nk} -линии в температурном интервале от 140 до 170 К, в котором происходит ионизация электронов с 1S(E) уровня в вышележащие возбужденные 2p состояния или в зону проводимости, равна 60 meV и согласуется с величинами энергий ионизации, полученных из высокотемпературного наклона температурной зависимости интенсивности I_{Nk} -линии в [1], для образцов с различной степенью компенсации.

Таким образом, на основании проведенного компьютерного анализа температурного поведения спектров ЭПР азота в кубических позициях азота и полученных их энергетических характеристик можно сделать вывод, что при температуре выше 120 К донорные электроны ионизуются с $1S(A_1)$ на 1S(E) уровень и наблюдаемая высокотемпературная линия ЭПР I_{Nk} -принадлежит атомам азота в 1S(E) возбужденном состоянии.

3. Оптическая перезарядка парамагнитных состояний азота

Сделанные выводы могут быть дополнены результатами оптической перезарядки парамагнитных состояний азота при возбуждении образцов 6H SiC *n*-типа светом

Рис. 6. Спектр ЭПР доноров в кристаллах 6*H* SiC *n*-типа при T = 77 K после охлаждения образца: a — в темноте; b — в условиях УФ подсветки.

в области собственного поглощения. На рис. 6 приведен спектр ЭПР доноров в 6*H* SiC *n*-типа при T = 77 K после охлаждения кристаллов в темноте и при облучении УФ светом. Как видно из рис. 6, при охлаждении кристаллов в темноте при *T* = 77 К наблюдается два триплета сверхтонких линий ЭПР от азота в двух кубических позициях. При охлаждении образцов в условиях облучения УФ светом при T = 77 К спектр ЭПР представляет собой одиночную линию со значениями g-фактора, совпадающими с I_{Nk}-линией. После выключения УФ возбуждения при низкой температуре спектр ЭПР не меняется и только при отогреве кристалла в отсутствие УФ подсветки одиночная линия начинает падать по интенсивности, при этом ширина ее изменяется по закону, характерному для I_{Nk} -линии (см. рис. 5), а при температуре выше 200 K она исчезает.

Наблюдаемое поведение спектра ЭПР доноров при охлаждении кристаллов в условиях УФ подсветки свидетельствует о том, что неравновесные электроны, создаваемые межзонным светом, при высокой температуре (T > 140 K) захватываются ионизованными атомами азота на 1S(E) уровень и остаются на этом уровне в "замороженном" состоянии при дальнейшем понижении температуры. Это можно объяснить тем, что при T > 120 K донорные электроны уже могут локализоваться на уровне 1S(E), в то время как на $1S(A_1)$ уровне локализация их происходит при более низкой температуре. Захват электронов на уровень $1S(A_1)$ может происходить только при термоионизации их с уровня 1S(E), но не с понижением температуры.

Таким образом, с помощью УФ подсветки можно произвести оптическую перезарядку основного и возбужденного состояний азота.

Список литературы

- Е.Н. Калабухова, С.Н. Лукин, Ю.С. Громовой, Е.Н. Мохов. ФТТ 40, 10, 1824 (1998).
- [2] J.- M. Spaeth, S. Greulich-Weber, M. März, J. Reinke, M. Feege, E.N. Kalabukhova, S.N. Lukin. Materials Science Forum 239-241, 149 (1997).
- [3] W.E. Carlos. In: Properties of Silicon Carbide / ed. by G.L. Harris. IEE, inspec., 42 (1995).
- [4] S. Greulich-Weber. Phys. Stat. Sol. (a) 162, 95 (1997).