Влияние электрического тока на стартовые характеристики и активационные параметры коротких дислокаций в кристаллах кремния

© В.А. Макара, Л.П. Стебленко, В.В. Обуховский, Н.Я. Горидько, В.В. Лемешко

Киевский государственный университет им. Т. Шевченко, 252033 Киев, Украина

E-mail: makara@hq.ups.kiev.ua

(Поступила в Редакцию 26 июля 1999 г. В окончательной редакции 9 ноября 1999 г.)

> Показано, что пропускание электрического тока через кристаллический кремний может приводить к возникновению как эффекта гальванопластификации, так и гальваноупрочнения. Установлено, что на характер эффекта влияет температурный режим деформирования и наличие предварительной высокотемпературной обработки образцов. При этом время задержки движения коротких дислокаций и напряжения их старта под действием тока существенно изменяются. Обсуждается связь этих эффектов с изменением электрического состояния атмосферы Котрелла при прохождении тока через кристалл.

Известно, что возбуждение электронной подсистемы кристалла приводит к изменению подвижности дислокаций под действием механической нагрузки [1–3]. В качестве метода возбуждения может быть использовано влияние электрического поля, облучение светом, электронным пучком, а также ток инжекции.

Стимулирующее влияние тока на подвижность коротких дислокаций ($L \leq 100 \,\mu$ m) в кристаллическом Si экспериментально изучено в [4–6]. Зафиксированные в [4–6] особенности поведения индивидуальных дислокаций хорошо согласуются с выводами более поздней работы [7], где изучалась электропластическая деформация образцов кремния.

Характерными особенностями поведения коротких дислокационных сегментов в кристаллах кремния является существование стартовых напряжений σ_{st} и времен задержки t_{del} — начала движения дислокаций. Проведенные ранее исследования показали, что указанные стартовые характеристики зависят от условий выведения дислокаций в стартовые положения, режимов температурной обработки образцов, температуры исследований и состояния поверхности [8,9]. Можно полагать, что возникновение σ_{st} и t_{del} связано с образованием вокруг дислокаций области повышенной концентрации точечных дефектов (атмосферы Котрелла).

В настоящей работе исследуется влияние постоянного электрического тока на стартовые характеристики коротких дислокаций и на активационные параметры, определяющие процесс отрыва дислокаций от атмосферы Котрелла (энергию активации открепления дислокаций от центров закрепления и активационный объем процесса открепления).

Известно, что эффективным способом изменения концентрации и структуры микродефектов в кремнии является высокотемпературная обработка образцов (ВТО), в частности, в кислородосодержащей атмосфере [10,11]. Поэтому при исследовании влияния электрического тока на взаимодействие дислокаций с точечными дефектами нами использовались как исходные образцы кремния, так и образцы, прошедшие дополнительную высокотемпературную обработку на воздухе (отжиг при T = 1300 K в течение 3 часов). Слой окисла, образовавшегося в процессе такой термообработки, перед пропусканием электрического тока стравливался плавиковой кислотой.

Источником дислокационных полупетель служили концентраторы напряжений, проведенные в направлении [110] на поверхности (111). Движение дислокаций вызывалось изгибом вокруг оси [112] (четырехопорный метод). Размеры образцов составляли $20 \times 4 \times 0.4$ mm соответственно по направлениям [110], [112], [111]. Относительная ошибка в определении напряжения сдвига составляла 5%. Стартовое и финишное положение концов полупетель фиксировалось методом химического травления. Величины пробегов дислокаций измерялись на микроскопе БИОЛАМ-М с помощью окулярмикрометра с точностью $\approx 0.3 \,\mu$ m.

При изучении влияния электрического тока на динамику дислокаций нами использовался метод четырехопорного изгиба, который отличался от традиционного тем, что в роли двух нижних опор выступали вольфрамовые цилиндрические электроды, к которым подводилось электрическое напряжение. Это позволяло непосредственно в процессе механического деформирования образцов пропускать через них электрический ток.

Влияние постоянного электрического тока на пробеги дислокаций изучалось в области температур $T = 650 - 1000 \, {\rm K}$ при механических напряжениях $\sigma =$ = 11-110 MPa и плотностях тока $J = 1.10^2 - 1.10^6$ A/m². Известно, что в низкотемпературной области $(T < 800 \, \text{K})$ в исходных кристаллах кремния дислокации неподвижны. В настоящей работе было установлено, что пропускание электрического тока через образцы кремния приводит к тому, что дислокации начинают перемещаться при значительно более низких температурах, чем в исходных кристаллах.

Рис. 1. Влияние электрического тока и температуры на кинетику пробега дислокаций. $\sigma = 34$ MPa; T = 823 K; $J \cdot 10^{-5}$ A/m²: I = 0, 2 = 1, 3 = 2, 4 = 5, 5 = 10 (*a*); $\sigma = 110$ MPa, $J = 2 \cdot 10^{5}$ A/m²; T, K: I = 673, 2 = 723, 3 = 773 (*b*). В этих же условиях при J = 0 дислокации остаются неподвижными.

Представлялось целесообразным разбить весь исследуемый интервал температур на две части: высокотемпературную область $\Delta T_1 = 800-1000$ К (детально изученную ранее [4–6,8,9]) и низкотемпературную область $\Delta T_2 = 650-800$ К.

Экспериментально стартовые напряжения σ_{st} и времена задержки t_{del} определялись непосредственно по линеаризованным зависимостям средних длин перемещений $\Delta L(t)$ дислокаций от времени действия нагрузки t. Типичные зависимости пробегов дислокаций ΔL для различных механических напряжений при пропускании электрического тока через образцы кремния в областях ΔT_1 и ΔT_2 представлены на рис. 1. Из рис. 1, a видно, что при фиксированных температуре T и механическом напряжении σ время задержки t_{del} у возбужденных током кристаллах меньше, чем в исходных кристаллах Si, причем с увеличением плотности тока J времена задержек уменьшаются и даже совсем исчезают. Нами получено (рис. 2), что время задержки старта обратно пропорционально длине движущегося дислокационного сегмента ($t_{del} \approx const/L$). При фиксированных σ и *J* время задержки зависит также от температуры *T* образца (рис. 1 *b*).

Было установлено, что зависимость времени задержки t_{del} от температуры как в исходных образцах, так и в образцах, через которые протекал электрический ток, имеет экспоненциальный характер

$$t_{\rm del} \approx t_{\rm del \ 0} \exp[V(\sigma)/kT] F(\sigma)/L\nu, \qquad (1)$$

где $t_{del 0}$ — некоторый параметр аппроксимации, $V(\sigma)$ — энергия активации процесса отрыва дислокаций от атмосферы Котрелла, k — постоянная Больцмана, $F(\sigma)$ — коэффициент, зависящий от напряжения, L — длина дислокационного сегмента, ν — частота попыток отрыва дислокационного сегмента от точек закрепления [12–14].

Значения $V(\sigma)$ рассчитывались по температурной зависимости времен задержек для всего диапазона рабочих напряжений. Как оказалось, зависимость $V(\sigma)$ является линейной и может быть представлена формулой

$$V = V_0 - \gamma \sigma, \tag{2}$$

где V_0 — высота барьера, препятствующего термическому отрыву дислокаций с примесных центров в отсутствии внешних, действующих на кристалл напряжений, которую можно считать равной энергии открепления дислокаций от этих центров; γ – так называемый активационный объем процесса открепления дислокации единичной длины [9,15]. Определенные из экспериментальных результатов значения активационных параметров V_0 и γ приведены в таблице.

Рис. 2. Зависимость времени задержки начала движения дислокаций t_{del} от длины L дислокационных сегментов в кристаллах кремния при $\sigma = 63$ MPa, T = 823 K; J = 0.

A										
A IMPRIMATION IN TA	TODOMOT	$\mathbf{M} \mathbf{I} = \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M}$	OTIMATIATIA	LODOTICITY	THOTOMOTION	OT HOUTHOD	DODDODDOUUD I	DIMOTOTOTOTOTO	O TITUDOROM	TUDON ATTITUT
			ОТКИСНИСНИЯ		лислокании		заниснистия	8 NICHUKDVICI	<u>A II IIMACUKUM</u>	KUCNHUU
minudadi	The period of the second secon	ла процесси	o inpermention	nopoinni	Anonomani	or genipob	Sampernierinn	o momonprior	AU IU III IU UIUUII	
		1	1			· 1	1	1		1

		$J \cdot 10^{-4}$, A/m ²	Температурный интервал					
N⁰	Тип образца		$\Delta T_1 = 80$	00-1000 K	$\Delta T_2 = 650 - 800 \mathrm{K}$			
			V_0, eV	$\gamma \cdot 10^{27}, \mathrm{m}^3$	V_0, eV	$\gamma \cdot 10^{27}, \mathrm{m}^3$		
1	Si исходный	0	2.2 ± 0.1	1.0 ± 0.1	*	*		
2	Si	1.0	1.6 ± 0.1	0.9 ± 0.1	*	*		
3	Si	2.0	1.5 ± 0.1	0.8 ± 0.1	0.8 ± 0.1	0.2 ± 0.1		
4	Отожженный Si**	0	1.9 ± 0.1	3.5 ± 0.1	*	*		
5	Отожженный Si**	1.0 - 10.0	*	*	*	*		

Примечание. * — при указанных условиях движения дислокаций не зафиксировано; ** — температура отжига 1300 К, время отжига 3 часа.

Данные таблицы позволяют утверждать, что пропускание тока через кристаллический кремний приводит к уменьшению высоты начального барьера для открепления дислокаций V_0 на $0.6-0.7 \,\text{eV}$ в области высоких температур ($800-1000 \,\text{K}$). При низких температурах ($650-800 \,\text{K}$) значения V_0 определены только для токов плотностью $J = 2 \cdot 10^5 \,\text{A/m}^2$. При токах $J < 2 \cdot 10^5 \,\text{A/m}^2$ дислокации в указанной области температур оставались неподвижными в течение реального времени эксперимента. В обеих областях температур при плотности тока $J \ge 5 \cdot 10^5 \,\text{A/m}^2$ времена задержек в начале движения дислокаций практически отсутствовали, поэтому активационные параметры коротких дислокаций для указанных плотностей тока не определялись.

Значительное уменьшение высоты барьера V₀ под действием электрического тока можно трактовать как результат уменьшения энергии взаимодействия дислокаций с центрами закрепления. Известно [11,16,17], что в диапазоне температур ΔT_1 и ΔT_2 дислокации в кремнии заряжены и для соблюдения условия электронейтральности окружены областями пространственного заряда (цилиндры Рида). Атмосфера точечных дефектов вокруг дислокаций включает в себя и центры закрепления, преодолеваемые дислокацией в начале своего движения. При пропускании электрического тока изменяется зарядовое состояние центров закрепления за счет их частичной или полной нейтрализации, что обусловливает понижение потенциального барьера, связанного с кулоновским взаимодействием. Таким образом, если принять во внимание, что дислокация взаимодействует с центрами закрепления не только за счет упругого взаимодействия, но и за счет электрических сил, то уменьшение величины барьера V₀ у возбужденных электрическим током кристаллах Si может косвенно свидетельствовать об изменении зарядового состояния дислокаций и точечных дефектов при протекании электрического тока.

В отличие от энергии открепления дислокаций, которая довольно сильно изменяется в результате пропускания через кристаллы Si тока, активационный объем (а, следовательно, концентрация центров закрепления, удерживающих дислокацию в стартовом положении) слабо зависит от того, протекает ли ток через образец или нет. Следует отметить, что указанный результат относится к области высоких температур. Ситуация существенно изменяется при переходе в область низких температур, в которой у возбужденных кристаллов коэффициент γ резко (~ в 4 раза) уменьшается по сравнению со значением активационного объема в области высоких температур. Последнее может свидетельствовать о том, что в области низких температур концентрация и структура центров закрепления отличны от концентрации и структуры подобных центров в области высоких температур.

Как показали наши исследования, характеристики длинных и коротких дислокаций в кремнии имеют качественное отличие. Длинные дислокационные сегменты $(L \gg 300 \,\mu\text{m})$ не имеют задержки старта $(t_{\rm del} = 0)$, но зато при фиксированном σ начинает движение только часть дислокаций.

Качественно иная ситуация реализуется для коротких дислокационных полупетель ($L < 100 \,\mu$ m) в тех же кристаллах Si. При заданном σ короткие дислокации либо стартуют практически все одновременно, либо все дислокации остаются неподвижными. Именно для коротких дислокаций характерно возникновение эффекта временной задежки старта. При этом время задержки само является функцией напряжения: $t_{del} = t_{del}(\sigma)$ (рис. 3).

Представленная на рис. З зависимость $t_{del}(\sigma)$ относится к области высоких температур — область ΔT_1 . Взаимосвязь времени задержки и напряжения имеет характерный вид

$$\sigma_{\rm st}^* = V_0 - kT \ln(t_{\rm del}/t_{\rm del \ 0})\gamma^{-1}, \tag{3}$$

где *t*_{del 0} — некоторый параметр аппроксимации.

Напряжение $\sigma_{st}^A(J,T)$, при котором, как видно из рис. 3, дислокации стартуют одновременно с приложением силы (т.е. при $t_{del} = 0$) в дальнейшем будет называться напряжением абсолютного старта. При $\sigma_{st}^* < \sigma_{st}^A(J,T)$ короткие дислокации стартуют с задержкой ($t_{del} > 0$). Кроме того, существует граница напряжений $\sigma_{st}^0 < \sigma_{st}^A(J,T)$, при которой дислокации остаются неподвижными несмотря на сколь угодно большие времена воздействия (граница покоя дислокации).

Границы областей старта σ_{st}^0 и σ_{st}^A как в исходных, так и в гальвановозбужденных образцах зависят от температуры системы, уменьшаясь с ростом последней. При фиксированной температуре величина напряжений σ_{st}^A и σ_{st}^0 в кристаллах Si, возбужденных током, меньше, чем в исходных кристаллах. Так, при токе $J \ge 2 \cdot 10^5 \text{ A/m}^2$

Рис. 3. Стартовые характеристики движения коротких дислокаций в области температур ΔT_1 . Стрелки у букв A(I-5) указывают на соответствующие значения нагрузок абсолютного старта; B — граница покоя дислокаций. I - J = 0, T = 823 K; 2 - J = 0, T = 873 K; $3 - J = 1 \cdot 10^5$ A/m², T = 823 K; $4 - J = 1 \cdot 10^5$ A/m², T = 873 K; $5 - J = 1 \cdot 10^5$ A/m², T = 923 K.

 $\sigma_{\rm st}^0$ меньше исходного значения примерно в 3 раза. В гальвановозбужденных образцах значения $\sigma_{\rm st}^A$ и $\sigma_{\rm st}^0$ зависели от плотности тока, уменьшаясь с ростом *J*.

Следует подчеркнуть, что стартовые характеристики t_{del} , σ_{st}^A , σ_{st}^* и σ_{st}^0 имеют отмеченные выше особенности только в области температур T < 973 К. Однако в области $T \ge 973$ К может проявляться эффект гальваноупрочнения, когда при пропускании электрического тока через образцы Si, стартовые характеристики существенно изменяются — значения стартовых напряжений у возбужденных током кристаллах возрастают по сравнению со стартовыми напряжениями движения коротких дислокаций в исходных кристаллах Si (рис. 4). Отметим, что показанная на рис. 4 зависимость $\sigma_{st}^*(T)$ определялась для фиксированного времени задержки старта, равного 300 s.

Приведенные выше результаты позволяют утверждать, что протекание электрического тока приводит к пластифицирующему влиянию на приповерхностные слои кремния только при T < 973 К. Оказалось, что эффект электрического тока на движение дислокаций зависит не только от того, в каком диапазоне температур проводилось исследование, но и от предыстории образца, в частности, от предварительной ВТО образцов. Так, при пропускании электрического тока через образцы, прошедшие предварительную ВТО, движение дислокаций не наблюдалось ни в одном из исследуемых интервалов температур. В то же время в образцах кремния, которые прошли ВТО, но не подвергались воздействию тока, наблюдалось движение дислокаций, что и позволило определить активационные параметры процесса открепления дислокаций от примесных центров в отожженных на воздухе образцах (см. таблицу).

Таким образом, влияние электрического тока на стартовые характеристики и динамическое поведение дислокаций существенно зависит от предыстории образцов, что ярко проявляется на примере термообработанных (отожженных на воздухе) кристаллов кремния. В этом случае пропускание электрического тока закрепляет дислокации в стратовых положениях, что можно объяснить изменением зарядового состояния структурных дефектов в таких образцах. Согласно [18], отжиг кремния при высоких температурах T ~ 1300 К приводит к диффузии кислорода в объем материала по дислокациям и плоскостям скольжения и к формированию укрупненных центров закрепления. В [17,18] показано, что дислокации, окруженные атмосферой примесей, при такой термообработке теряют электрическую активность, т.е. в зарядовом отношении становятся нейтральными.

Именно электронейтральностью атмосферы можно объяснить наблюдаемое нами ранее [15] уменьшение времени задержки и увеличение скорости движения дислокаций в отожженных при высокой температуре $T \sim 1300 \, {\rm K}$) образцах. В то же время при пропускании электрического тока изменяется состояние атмосферы Котрелла вокруг дислокации, а именно первоначальное электронейтральная атмосфера становится заряженной. Можно предположить, что сформированные при пропускании тока укрупненные заряженные центры настолько сильно закрепляют дислокации в стартовых положениях, что дислокации уже не способны покинуть стартовые позиции при неразрушающих нагрузках. Таким образом, пропускание электрического тока через образцы, которые прошли специальную термообработку, должно приводить к повышению жесткости кристалла по отношению к жесткости образцов, которые не подвергались обработке электрическим током.

Рис. 4. Температурная зависимость напряжения старта σ_{st}^* при фиксированном времени задержки $t_{del} = 300$ s. *J*, A/m²: *1* — 0, $2 - 1 \cdot 10^5$.

В заключение отметим, что пропускание электрического тока через кристаллы кремния в зависимости от температуры испытания и предыстории образцов может приводить к появлению двух противоположных эффектов. При T < 973 К в неотожженных ("исходных") образцах проявляется эффект гальванопластификации. При этом уменьшаются (вплоть до полного исчезновения) времена задержки начала движения дислокаций и снижаются (в несколько раз) величины стартовых напряжений. При $T \ge 973 \,\mathrm{K}$ эффект гальванопластификации сменяется эффектом гальваноупрочнения. В кристаллах кремния, прошедших ВТО во всем исследованном температурном диапазоне существует тенденция к гальваноупрочнению. Последний эффект может быть связан с закреплением дислокаций на стопорах, что проявляется в росте стартовых напряжений и увеличении времени задержки старта.

Список литературы

- Ю.А. Осипьян, В.Ф. Петренко. В кн.: Физика соединений А^{II}В^{VI}. Мир, М. (1986). С. 35.
- [2] Н. Маеда, К. Кимура, С. Такеучи. Изв. АН СССР. Сер. физ. 51, 4, 729 (1987).
- [3] Т. Судзуки, Х. Ёсинага, С. Такеучи. Динамика дислокаций и пластичность. Мир, М. (1989). 294 с.
- [4] V.A. Makara, L.P. Steblenko, E.G. Robur. Solid State Phenom. 32–33, 619 (1993).
- [5] В.В. Лемешко, В.А. Макара, В.В. Обуховский, Л.П. Стебленко, Е.Г. Робур. ФТТ 36, 9, 2618 (1994).
- [6] В.А. Макара, Л.П. Стебленко, Н.Я. Горидько и др. Доповіді АН України 3, 78 (1994).
- [7] М.А. Алиев, Х.О. Алиева, В.В. Селезнев. ФТТ 37, 12, 3732 (1995).
- [8] Н.Я. Горидько, В.А. Макара, Н.Н. Новиков, Л.П. Стебленко. ФТТ 25, 9, 2598 (1983).
- [9] В.А. Макара, Н.Н. Новиков, Л.П. Стебленко, Н.Я. Горидько. ФТТ 31, 5, 31 (1989).
- [10] В.С. Вавилов, В.Ф. Киселев, Б.Н. Мукашев. Дефекты в кремнии и на его поверхности. Наука, М. (1990). 212 с.
- [11] К. Рейви. Дефекты и примеси в полупроводниковом кремнии. Мир, М. (1984). 475 с.
- [12] Ван Бюрен. Дефекты в кристаллах. ИЛ, М. (1962). 584 с.
- [13] Б.В. Петухов. ФММ 56, 6, 1177 (1983).
- [14] Дж. Хирт, И. Лоте. Теория дислокаций. Атомиздат, М. (1972). 599 с.
- [15] В.А. Макара. Изучение характера движения коротких дислокационных сегментов в кристаллах с высокими барьерами Пайерлса. Препринт ИЭС им. Б.О. Патона ИПМ-86-2. Киев (1986). 56 с.
- [16] Г. Матаре. Электроника дефектов в полупроводниках. Мир, М. (1974). 463 с.
- [17] I.E. Bondarenko, E.B. Yakimov. Phys. Stat. Sol. (a) **122**, *1*, 121 (1990).
- [18] F. Shimura. Elektrochem. Soc. 128, 7, 1579 (1981).