Эффекты фазового перехода в кристаллах Hg₂(Br,I)₂

© Ю.Ф. Марков, К. Кнорр*, Е.М. Рогинский**

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021, Санкт-Петербург, Россия *Universität des Saarlandes, Saarbrücken, Germany **Санкт-Петербургский государственный технический университет,

195251 Санкт-Петербург, Россия

(Поступила в Редакцию 29 октября 1999 г.)

В широком интервале температур при помощи комбинационного рассеяния света и рентгеноструктурного анализа изучены эффекты фазового перехода в кристаллах $Hg_2(Br,I)_2$. В спектрах комбинационного рассеяния этих кристаллов обнаружены и изучены обертона (граница зоны Бриллюэна, Х-точка) и основные тона (центр зоны Бриллюэна) мягких мод. В спектрах смешанных кристаллов наблюдается проявление плотности однофононных состояний мягкой ТА-ветви. В полном объеме реализована мягкомодовая спектроскопия. Из соотношения интенсивностей обертонов и основных тонов мягких мод показана выполнимость феноменологической теории фазовых переходов Ландау. В рентгеновских дифрактограммах обнаружено и изучено ромбическое расцепление рефлексов базисной плоскости, получены температурные зависимости изотропной и сдвиговой спонтанных деформаций при определяющей роли последней. Определены критические индексы. Подтверждена модель несобственного сегнетоэластического фазового перехода $D_{4h}^{17} \rightarrow D_{2h}^{17}$, происходящего в окрестности трикритической точки.

Работа в значительной степени выполнена благодаря финансовой поддержке РФФИ (грант № 98-02-16144) и DFG (Germany).

Кристаллы галогенидов одновалентной ртути Hg₂Hal₂ (Hal = Cl, Br, I) при комнатной температуре образуют тетрагональную объемно-центрированную решетку D_{4h}^{17} с двумя линейными молекулами (формульными единицами) в элементарной ячейке [1]. Они обладают уникальными физическими свойствами, в частности рекордно высоким двулучепреломлением, рекордно низкой скоростью звука и высокими акустооптическими константами [2]. Эти кристаллы используются в технике в качестве основных элементов поляризаторов, акустических линий задержки, акустооптических фильтров и др.

Значительное внимание к этим объектам связано с тем, что они являются модельными кристаллическими системами при исследовании общих проблем структурных фазовых переходов. Несобственные сегнетоэластические фазовые переходы $D_{4h}^{17} \rightarrow D_{2h}^{17}$ из тетрагональной фазы в ромбическую, индуцированные конденсацией наиболее медленной мягкой ТА-ветви в Х-точке границы зоны Бриллюэна (3Б), сопровождаемые удвоением элементарной ячейки и Х \rightarrow Г-"перебросом" в ЗБ, были обнаружены в этих кристаллах при охлаждении до $T_c = 186$ (Hg₂Cl₂) и 144 K (Hg₂Br₂) [3]. Фазовый переход в кристаллах Hg₂I₂ удалось реализовать лишь при высоком гидростатическом давлении ($P_c = 9$ Kbar при T = 293 K) [4].

В последние годы значительно возрос интерес к изучению динамики решеток и фазовых переходов в смешанных кристаллах. Были изучены $Hg_2(Cl,Br)_2$ [5] и начато изучение $Hg_2(Cl,I)_2$ [6] и $Hg_2(Br,I)_2$ [7] кристаллов. В настоящей работе впервые при помощи рентгеновской и оптической (комбинационное рассеяние света) методик начато изучение фазовых переходов в системе смешанных кристаллов $Hg_2(Br,I)_2$. Изучены смешанные моно-кристаллы $Hg_2(Br_{0.88},I_{0.12})_2$ и для сравнения кристаллы чистого Hg_2Br_2 , представляющие крайнюю компоненту

в системе $Hg_2(Br,I)_2$. Изучены мягкие моды в парафазе (обертона в X-точке границы ЗБ), индуцирующие фазовые переходы, и в сегнетоэластической фазе (основные тона в центре ЗБ — Г-точка), ромбическое расщепление фундаментальных брэгговских рефлексов, спонтанные деформации, критические индексы и т.д.

1. Методика эксперимента

Оптические спектры регистрировались при помощи тройного Раман-спектрометра "Dilor-Z24" с использованием аргонового ($\lambda = 5145 \,\text{\AA}$) и гелий-неонового $(\lambda = 6328 \text{ Å})$ лазеров, мощности которых варьировались от десятков до сотен mW. Рентгеновские измерения выполнялись на двухкружном дифрактометре с использованием излучения $K_{\alpha_1-\alpha_2}$ медного анода. В низкотемпературных измерениях, как оптических, так и рентгеноструктурных, использовались гелиевые криостаты замкнутого цикла "Cryogenics" с хорошей стабилизацией температуры (~ 0.1 К). Образцами в этих измерениях служили монокристаллы Hg₂(Br,I)₂ размером $5 \times 5 \times 5$ mm, выколотые по плоскостям спайности (110), $(1\bar{1}0)$, вырезанные по (001), шлифованные и полированные, которые в случае рентгеноструктурных измерений дополнительно обрабатывались травителем — раствором "царской водки" в дистиллированной воде.

2. Низкочастотные спектры комбинационного рассеяния

Поскольку спектры комбинационного рассеяния смешанных кристаллов $Hg_2(Br,I)_2$ при комнатной температуре были изучены ранее [7], то в настоящей работе

Рис. 1. Низкочастотные спектры комбинационного рассеяния света (стоксовая и антистоксовая области) кристаллов Hg₂Br₂ (*a*) и Hg₂(Br_{0.88},I_{0.12})₂ (*b*) при различных температурах. (Спектры 2-го порядка ($2\omega_{sm}$) усилены в ~ 20 раз). Звездочкой обозначены максимумы, соответствующие плотности однофононных состояний мягкой ТА-ветви в *X*-точке ЗБ.

Рис. 2. Температурные зависимости частоты обертона $2\omega_{sm}$ и основного тона ν_{sm} мягкой моды в кристаллах Hg₂Br₂ (a — экспериментальные точки-кружки) и Hg₂(Br_{0.88},I_{0.12})₂ (b — треугольники).

основное внимание было уделено изучению эффектов фазовых переходов — обнаружению и изучению мягких мод в парафазе (Х-точка ЗБ) и сегнетоэластической фазе (центр ЗБ — Г-точка).

На рис. 1 приведены некоторые наиболее характерные низкочастотные спектры комбинационного рассеяния света кристаллов $Hg_2(Br,I)_2$ в геометрии Z(XX)Y при различных температурах как выше, так и ниже T_c . Можно видеть на рис. 1, *а* в стоксовой и антистоксовой частях спектра при $T > T_c = 144$ K

(Hg₂Br₂) четко выраженные широкие максимумы $2\omega_{sm}$ в области $12 \,\mathrm{cm}^{-1}$ (293 K) и узкие интенсивные линии ν_{sm} при $T \leq T_c$, частоты которых стремятся к нулю при приближении к температуре фазового перехода $(T \to T_c)$. Эти максимумы $2\omega_{sm}$ соответствуют обертону ТА-мягкой ветви (главным образом в X-точке границы 3Б) и основному тону ν_{sm} мягкой моды в центре 3Б, возгорание которого при $T \leq T_c$ индуцировано фазовым переходом, а именно удвоением элементарной ячейки и $X \to \Gamma$ -"перебросом" в 3Б.

Рис. 3. Зависимость частоты обертона $2\omega_{sm}$ (*a*) и основного тона ν_{sm} (*b*) мягкой моды от приведенной температуры *t* в двойной логарифмической шкале; $1 - \text{Hg}_2\text{Br}_2$, $2 - \text{Hg}_2(\text{Br}_{0.88}, I_{0.12})_2$ (штриховые прямые — линейная аппроксимация).

На рис. 1, b также приведены типичные низкочастотные спектры комбинационного рассеяния, но уже для случая смешанных кристаллов $Hg_2(Br_{0.88},I_{0.12})_2$. Из рисунка видно, что все мягкомодовые спектры подобны спектрам чистого Hg₂Br₂, однако линии (максимумы) несколько уширены, что связано с неоднородным уширением, индуцированным неупорядоченностью анионной подрешетки. Кроме этого, в спектрах наиболее отчетливо при температурах вблизи комнатной проявляются дополнительные широкие максимумы, обозначенные звездочкой, связанные с проявлением плотности однофононных состояний мягкой ТА-ветви и лежащие в области частот $\sim 6 \, {\rm cm}^{-1}$. Возгорание основного тона мягкой моды (Г-точка ЗБ) наблюдается при более низкой температуре $T_c = 100 \,\mathrm{K}$, т.е. введение в чистый Hg₂Br₂ небольшой примеси Hg₂I₂ (12%) приводит к аномально большому сдвигу (понижению) температуры перехода Т_с. Здесь, как и в случае чистого Hg₂Br₂, интенсивность обертона мягкой моды 2 ω_{sm} значительно ниже (приблизительно в 20 раз) интенсивности основного тона мягкой моды ν_{sm} .

На рис. 2 построены температурные зависимости частот мягких мод в изученных кристаллах, откуда наглядно видно сильное смягчение основного тона и обертона мягкой моды при приближении температуры к *T_c*. Эти зависимости, но уже от приведенной температуры $t = (T - T_c)/T_c$, в двойном логарифмическом масштабе приведены на рис. 3. Как видно из этого рисунка, при $T > T_c$ зависимости логарифма частоты обертона мягкой моды $2\omega_{sm}$ от логарифма приведенной температуры tв чистом и смешанном кристаллах достаточно хорошо описываются прямыми линиями, что позволяет аппроксимировать зависимость частоты обертона мягкой моды формулой

$$2\omega_{sm} = gt^{\beta}, \qquad (1)$$

где g — константа, β' — критический индекс.

Из этой формулы были определены значения критических индексов β' , равные 0.50 ± 0.02 (Hg₂Br₂) и 0.51 ± 0.02 (Hg₂(Br_{0.88},I_{0.12})₂), величины которых полностью соответствуют феноменологической теории Ландау фазовых переходов II рода ($\beta' = 0.5$). Анализируя графики на рис. 3 (логарифмическая зависимость частот основных тонов мягких мод ν_{sm} от приведенной температуры t при $T \leq T_c$), можно видеть, что эти зависимости в широком интервале температур удается аппроксимировать приблизительно прямыми линиями и они могут быть описаны, как и в случае обертонов мягкой моды, простым степенным законом

$$\nu_{sm} = \delta t^{\beta^{\prime\prime}},\tag{2}$$

где δ — константа, β'' — критический индекс.

Из этой формулы можно оценить (при $T \leq T_c$) величины критических индексов β'' , которые оказались равными 0.34 ± 0.02 и 0.33 ± 0.02 соответственно для чистого Hg₂Br₂ и смешанного Hg₂(Br_{0.88},I_{0.12})₂ кристаллов.

3. Рентгеноструктурные измерения

Температурные зависимости параметров базисной плоскости упомянутых выше кристаллов Hg₂(Br,I)₂ были изучены вплоть до гелиевых температур. В частности, изучалось ромбическое расщепление фундаментальных (440) рефлексов тетрагональной парафазы D_{4k}^{17} , индуцированное фазовым переходом (рис. 4). Расщепление этих рефлексов при $T \leq T_c$ связано с возникновением ромбических доменов, повернутых на 90° друг относительно друга вокруг тетрагональной оси, т.е. рефлексы от плоскости (110) наложены на рефлексы от плоскости (110). В низкотемпературной фазе параметры (размеры) новой элементарной ячейки вдоль направлений [110] и [110] становятся неэквивалентными и брэгговские максимумы вдоль этих направлений расщепляются ниже Тс. При дальнейшем охлаждении это ромбическое расщепление увеличивается. Момент появления этого расщепления (рис. 4), как и момент возгорания основного тона мягкой моды ν_{sm} в центре ЗБ (Г-точка), служит репером температуры фазового перехода T_c, которая равна 144 К для Hg₂Br₂ и 100 К в случае Hg₂(Br_{0.88},I_{0.12})₂. Ромбические расщепления были измерены как при охлаждении, так и при нагреве, однако в пределах погрешности эксперимента гистерезис в этих кристаллах не был обнаружен. В обоих случаях ромбическое расщепление протекает без скачков, указывая на непрерывный характер фазовых переходов. В случае смешанного кристалла ($T < T_c$) реализуется несколько меньшая величина расщепления при равном

Рис. 4. Температурная зависимость параметров базисной плоскости d_{110} в кристаллах Hg₂Br₂ (*a*), Hg₂(Br_{0.88},I_{0.12})₂ (*b*).

Рис. 5. Зависимость изотропной ε_1^0 и сдвиговой ε_6^0 спонтанных деформаций от приведенной температуры *t* в кристаллах Hg₂Br₂ (*a*), Hg₂(Br_{0.88}, I_{0.12})₂ (*b*).

удалении от T_c , что естественно связать с влиянием разупорядочения анионной подрешетки. Упомянутые выше аномальные температурные зависимости параметров решетки индуцированы возникновением спонтанных сегнетоэластических деформаций при температурах $T \leq T_c$. Согласно [3], спонтанные деформации ε_i^0 (i = 1, 2, 3, 6) в базисной плоскости в кристаллах Hg₂(Br,I)₂ имеют следующие ненулевые компоненты (в обозначениях тетрагональной фазы): $\varepsilon_1^0 = \varepsilon_{xx} = \varepsilon_2^0 = \varepsilon_{yy}$, $\varepsilon_3^0 = \varepsilon_{zz}$ и $\varepsilon_6^0 = \varepsilon_{xy}$, где x, y, z — тетрагональные оси кристалла. Сдвиговая спонтанная деформация

$$\varepsilon_6^0 = \frac{d_{110} - d_{1\bar{1}0}}{d_{110}^0}.$$
 (3)

Изотропная деформация в базисной плоскости имеет следующий вид:

$$\varepsilon_1^0 = \frac{d_{110} + d_{1\bar{1}0}}{2d_{110}^0} - 1,\tag{4}$$

где d_{110}^0 — параметр кристаллической решетки, соответствующий температуре 0°С, при которой спонтанные деформации равны нулю.

На рис. 5 приведены температурные зависимости спонтанных деформаций в случае изученных кристаллов $Hg_2(Br,I)_2$, вычисленные из эксперимента по формулам (3) и (4). Очевидно, что выше температуры фазового перехода сдвиговая спонтанная деформация равна нулю (см. формулу (3)), а изотропная деформация в этом

Рис. 6. Зависимость изотропной ε_1^0 (*I*) и сдвиговой ε_6^0 (*2*) спонтанных деформаций от приведенной температуры *t* в двойной логарифмической шкале в кристаллах Hg₂Br₂ (*a*), Hg₂(Br_{0.88},I_{0.12})₂ (*b*) (штриховые прямые — линейная аппроксимация).

температурном интервале линейно изменяется с температурой. При $T \leq T_c$, как в случае чистого Hg₂Br₂, так и смешанного Hg₂(Br_{0.88},I_{0.12})₂ кристаллов, температурные зависимости деформаций типичны для структурных фазовых переходов. Величины сдвиговой ε_6^0 и изотропной ε_1^0 спонтанных деформаций ($T \leq T_c$) определялись как разность между экспериментальными значениями и фоновой деформацией, полученной из экстраполяции высокотемпературного поведения ε_i в область низких температур. В случае сдвиговой спонтанной деформации ε_6^0 фоновая деформация всюду равна нулю (см. формулу (3)). Температурная зависимость спонтанной деформации ε_i^0 (i = 1, 6) при $T \leq T_c$ может быть описана следующим выражением:

$$\varepsilon_i^0 = a_i t^{2\beta},\tag{5}$$

где a_i — постоянный множитель, 2β — критический индекс.

Такие зависимости в двойной логарифмической шкале приведены на рис. 6. Экспериментальные точки в изученных кристаллах $Hg_2(Br,I)_2$ описываются линейными зависимостями (штриховые линии на рис. 6), из наклона которых были определены значения критических индексов 2 β , равные 0.48 ± 0.08 (ε_1^0), 0.56 ± 0.05 (ε_6^0) и 0.46 ± 0.08 (ε_1^0), 0.55 ± 0.05 (ε_6^0) для кристаллов Hg₂Br₂ и Hg₂(Br_{0.88},I_{0.12})₂ соответственно. Здесь следует заметить, что наиболее точно определяются значения критических индексов, описывающих температурные зависимости сдвиговой спонтанной деформации ε_6^0 , так как в этом случае не существует проблемы фона (он просто отсутствует), да и ее абсолютные значения почти на порядок выше значений изотропной спонтанной деформации ε_1^0 .

4. Обсуждение результатов

Проведенные исследования эффектов фазовых переходов в Hg₂(Br,I)₂ позволили наблюдать в спектрах комбинационного рассеяния мягкие моды как в парафазе, так и в сегнетоэластической фазе обоих изученных кристаллов. В низкочастотных спектрах парафазы проявлялся главным образом обертон самой медленной мягкой ТА-ветви 2*ω*_{sm} из Х-точки границы ЗБ. В сегнетоэластической фазе наблюдался основной тон мягкой моды ν_{sm} , но уже из центра зоны Бриллюэна (Г-точка), появление которого было индуцировано фазовым переходом, удвоением элементарной ячейки и Х-Г-"перебросом" в ЗБ. Низкочастотные спектры чистого Hg2Br2 и смешанного кристаллов Hg₂(Br_{0.88},I_{0.12})₂ подобны. Однако имеются и некоторые различия, в частности, в спектрах смешанного кристалла Hg₂(Br,I)₂ уже при малых степенях легирования проявляются максимумы (как в стоксовой, так и в антистоксовой областях), обозначенные на рис. 1 звездочками, которые, по-видимому, связаны с проявлением плотности однофононных состояний мягкой ТА-ветви. Причем основной вклад вносят колебательные состояния из Х-точки ЗБ. Частоты этих максимумов приблизительно в 2 раза (как и должно быть) меньше частот соответствующих обертонов мягких мод $(2\omega_{sm})$, они аномально зависят от температуры, смягчаясь, так же как и обертон, при $T \to T_c^+$. Проявление плотности однофононных состояний индуцировано нарушением трансляционной симметрии из-за хаотического распределения атомов Br и I в анионной подрешетке смешанных кристаллов. Это нарушение велико и связано с большим различием ионных радиусов брома и иода, что может вызывать большие локальные упругие напряжения при замещении ионов брома ионами иода и создавать условия для зарождения кластеров низкотемпературной ромбической фазы в тетрагональной высокотемпературной парафазной матрице. (Напомним здесь, что зависимость температуры фазового перехода от внешнего гидростатического давления в кристаллах Hg₂Br₂ составляет 46.8 K/kbar [8]. Можно ожидать, что и в смешанных кристаллах Hg₂(Br,I)₂ при небольших степенях замещения имеет место аналогичная сильная зависимость T_c от упругих напряжений).

Из сравнения интенсивностей обертона мягкой моды $2\omega_{sm}$ (граница ЗБ, Х-точка) при $T > T_c$ и основного тона ν_{sm} (центр 3Б) при $T < T_c$ в спектрах комбинационного рассеяния кристаллов Hg₂(Br,I)₂, когда интенсивность основного тона приблизительно в 20 раз больше интенсивности обертона, следует выполнимость во всем изученном температурном интервале феноменологической теории фазовых переходов Ландау [9]. Значения критических индексов, характеризующих температурное поведение мягких мод как выше, так и ниже Т_с, также не противоречат теории Ландау фазовых переходов II рода. Их значения 0.50 и 0.51 в парафазе для случая чистого и смешанного кристаллов Hg₂(Br,I)₂ полностью согласуются с теорией Ландау ($\beta' = 0.5$) для случая фазовых переходов II рода и слабопервородных переходов, близких к структурным фазовым переходам II рода. Однако при $T \leq T_c$ значения β'' , равные 0.34 и 0.33 соответственно для чистого и смешанного кристаллов

 $Hg_2(Br,I)_2$, требуют привлечения модели фазовых переходов, близких к трикритической точке, что ранее и было нами успешно сделано в случае чистых кристаллов Hg_2Cl_2 и Hg_2Br_2 [10].

Анализируя экспериментальную ситуацию с ромбическим расщеплением в случае изученных кристаллов Hg₂(Br,I)₂ (рис. 4), можно видеть, что величины этого расщепления, индуцированного фазовым переходом ($T \leq T_c$), меньше в смешанном кристалле $Hg_2(Br_{0.88},I_{0.12})_2$, чем в чистом Hg_2Br_2 при равном температурном удалении от Т_с. Поскольку значения спонтанных деформаций ε_i^0 связаны с этим расщеплением и температурным поведением параметров базисной плоскости сегнетоэластической фазы, можно ожидать, что ε_i^0 во всем изученном температурном интервале меньше в случае кристаллов Hg₂(Br_{0.88},I_{0.12})₂ (см. рис. 5). Меньшие значения спонтанных деформаций ε_i^0 в случае смешанных кристаллов Hg₂(Br_{0.88},I_{0.12})₂ связаны с разупорядочением анионной подрешетки и возникновением значительных хаотических упругих напряжений и деформаций при замещении ионов брома ионами иода. Здесь следует отметить, что определяющей в механизме фазового перехода в кристаллах $Hg_2(Br,I)_2$ является сдвиговая спонтанная деформация ε_6^0 , которая почти на порядок во всем изученном интервале ($T \leq T_c$), вплоть до гелиевых температур, превосходит изотропную спонтанную деформацию ε_1^0 . Обращаясь к значениям критических индексов 2 β , полученным из анализа температурного поведения спонтанных деформаций ε_i^0 можно видеть, что их значения близки к величинам 0.5, которые характерны для фазовых переходов, происходящих вблизи трикритической точки. Здесь следует напомнить, что температурное поведение мягких мод в этих кристаллах и значения соответствующих критических индексов также требуют привлечения модели фазовых переходов в окрестности трикритической точки.

В заключение авторы приносят благодарность А.А. Каплянскому за всемерную поддержку и обсуждение результатов.

Список литературы

- [1] H. Mark, J. Steinbach. Z. Krystallogr. 64, 78 (1926).
- [2] Proceedings of the 2nd Intern. Symposium on Univalent Mercury Halides. Trutrov, CSFR (1989).
- [3] А.А. Каплянский, Ю.Ф. Марков, Ч. Барта. Изв. АН СССР. Сер. физ. 43, 8, 1641 (1979); Ч. Барта, А.А. Каплянский, В.В. Кулаков, Б.З. Малкин, Ю.Ф. Марков. ЖЭТФ 70, 1429 (1976).
- [4] Ч. Барта, А.А. Каплянский, Ю.Ф. Марков, В.Ю. Мировицкий. ФТТ 27, 8, 2500 (1985).
- [5] G.F. Dobrzhanskii, A.A. Kaplyanskii, M.F. Limonov, Yu.F. Markov. Ferroelectrics 48, 69 (1983).
- [6] Г.М. Зингер, Ю.Ф. Марков, В.В. Шабалин. ФТТ 29, 3620 (1987).
- [7] Ю.Ф. Марков, А.Ш. Тураев. ФТТ 37, 7, 2133 (1995).
- [8] А.А. Каплянский, Ю.Ф. Марков, В.Ю. Мировицкий, Н.Н. Степанов. ФТТ 27, 1, 223 (1985).
- [9] Рассеяние света вблизи точек фазовых переходов. Под ред. Г. Камминза, А.П. Леванюка. Наука, М. (1990). 414 с.
- [10] M.E. Boiko, Yu.F. Markov, V.S. Vikhnin, A.S. Yurkov, B.S. Zadokhin. Ferroelectrics 130, 263 (1992).