Теплопроводность и число Лорентца "золотой" фазы Sm_{1-x}Gd_xS-системы с гомогенной переменной валентностью самария

© А.В. Голубков, А.В. Гольцев, Л.С. Парфеньева, И.А. Смирнов, Х. Мисерек*, Я. Муха*, А. Ежовский*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Институт низких температур и структурных исследований Польской академии наук,

53-529 Вроцлав, Польша

(Поступила в Редакцию 4 ноября 1999 г.)

В интервале 160–300 К измерены теплопроводность и электросопротивление для двух составов "золотой" фазы системы $Sm_{1-x}Gd_xS$ с x = 0.14 и 0.3, в которых имеет место гомогенная переменная валентность ионов самария. Обнаружено, что полученное на эксперименте число ца *L*, входящее в электронную составляющую теплопроводности для этих составов, в исследованном интервале температур превышает теоретическое зоммерфельдовское значение $L_0 = 2.45 \cdot 10^{-8} W\Omega/K^2$, характерное для металлов и сильно вырожденных полупроводников. Показано также, что в интервале 160–300 К *L* возрастает с повышением температуры начиная с 160 К. Обсуждается теоретическая модель, которая может объяснить полученные экспериментальные результаты.

Работа выполнена в рамках двустороннего соглашения РАН и Польской академии наук при финансовой поддержке Российского фонда фундаментальных исследований по грантам № 99-02-18078 и № 98-02-18299.

Физические свойства системы твердых растворов $Sm_{1-x}Gd_xS$ начали исследоваться с 1973 г. [1]. К настоящему времени в литературе опубликовано большое число работ, посвященных изучению этой системы. К сожалению, теплопроводность (\varkappa) $Sm_{1-x}Gd_xS$ исследовалась лишь в одной работе [2]. В ней в интервале температур 80–300 К была измерена \varkappa двух составов, с x = 0.1 и 0.14, относящихся к так называемой "черной" фазе этой системы. Однако данные по $\varkappa(T)$ позволяют получить интересные сведения о механизмах рассеяния носителей тока и фононов в веществе, а также могут дать новую информацию об электронной зонной структуре исследуемого материала.

Напомним сначала об основных особенностях системы $Sm_{1-x}Gd_xS$.

1) В Sm_{1-x}Gd_xS при x = 0.16 происходит изоструктурный (NaCl–NaCl) фазовый переход первого рода сильно вырожденный полупроводник (или "плохой" металл) — металл, в котором ионы самария находятся в состоянии гомогенной переменной валентности (Sm^{+2.6}) [1,3–6]. При фазовом переходе (x = 0.16) постоянная кристаллической решетки (при 300 K) изменяется от $a_{x<0.16} = 5.85$ до $a_{x>0.16} = 5.68$ Å [7,8]. Фазовый переход происходит за счет внутреннего "химического сжатия" ионов самария, возникающего из-за различия ионных радиусов Sm⁺² и Gd⁺³.

2) Образцы в интервале составов $x = 0 \div 0.16$ имеют черный цвет ("черная" фаза *B*), а после фазового перехода при x > 0.16 приобретают золотисто-желтую окраску ("золотая" фаза *G*).¹

3) Образцы Sm_{1-x}Gd_xS с x = 0.16 (до $x \sim 0.3-0.35$) при $T \lesssim 120-150$ К испытывают фазовый переход $G \rightarrow B$ с изменением постоянной решетки от ~ 5.68 до 5.83-5.85 Å. Переход происходит скачком, массивный образец при этом превращается в порошок. Переход обратим по температуре. При повышении температуры от 300 до 900 К наблюдается "постепенный" фазовый переход от металла к сильно вырожденному полупроводнику (*B*). Постоянная решетки при 900 К становится равной 5.53-5.85 Å. Переход обратим по температуре, а образец при температурном циклировании не разрушается [5,7,9,10] (рис. 1).

4) При гидростатическом давлении $P_{cr} \sim 6.5 \, {
m kbar}$ $(300 \, \text{K})$ в SmS наблюдается изоструктурный $(NaCl \leftrightarrow NaCl)$ фазовый переход первого рода полупроводник-металл $(B \rightarrow G)$ с изменением постоянной решетки с 5.95 до 5.68-5.7 Å. При снятии давления происходит обратный переход $(G \rightarrow B)$; при этом имеет место большой гистерезис по давлению. Обратный переход сопровождается растрескиванием образца и превращением его в порошок [5,6,11].

В системе Sm_{1-x}Gd_xS составы до x = 0.16при приложении гидростатического давления при $P_{cr}(\text{Sm}_{1-x}\text{Gd}_x\text{S}) < P_{cr}(\text{SmS})^2$ также испытывают фазовый переход $B \to G$, подобный наблюдающемуся в SmS [5–7]. При снятии давления происходит обратный фазовый переход $G \to B$. Исключение в системе Sm_{1-x}Gd_xS составляют составы с x = 0.12-0.15. Образцы этих составов могут быть переведены в "золотую" фазу G при приложении гидростатического давления ~ 4 kbar (300 K). При этом после снятия давления состояние с гомогенной переменной валентностью ионов самария сохраняется в этих образцах в интервале температур $\sim 150-400$ K

¹ В дальнейшем для краткости изоструктурные фазовые переходы сильно легированный полупроводник ("плохой" металл, — металл, в котором ионы Sm находятся в состоянии гомогенной переменной валентности (Sm^{+2.6}), и обратный фазовый переход будем обозначать соответственно как переходы $B \to G$ и $G \to B$.

 $^{^{2}} P_{cr}(Sm_{1-x}Gd_{x}S) < P_{cr}(SmS)$ из-за наличия в твердом растворе дополнительного внутреннего "химического сжатия".

неограниченно долго [5,7,12–17] (рис. 1). При снятии давления образцы не растрескиваются. Наблюдаются незначительные изменения в структуре образцов: после обработки давлением монокристаллические блоки в них разбиваются на блоки размером $\sim 100 \,\mu$ m, разориентированные на 4° [14]. Обратимый фазовый переход $G \rightarrow B$ можно инициировать у них температурой [7,14,15]. Переход с разрушением образца происходит при $T \sim 150$ и 400 K (рис. 1).

5) Зона проводимости $\text{Sm}_{1-x}\text{Gd}_x\text{S}$ конструируется из "тяжелой" d и "легкой" s-подзон для "черной" фазы и s, d и f ("сверхтяжелой") подзон в "золотой" фазе [5,18,19].

Теперь приступим к изложению результатов, полученных в настоящей работе.

Цель работы: 1) в интервале температур 160–300 К определить величину и температурную зависимость \varkappa "золотой" фазы составов с x = 0.3 и 0.14 (образца, обработанного гидростатическим давлением) системы Sm_{1-x}Gd_xS; 2) определить, влияет или не влияет на число Лорентца наличие в "золотой" фазе гомогенной переменной валентности ионов самария.

Образцы для исследования приготавлялись следующим образом. SmS и GdS синтезировались из простых веществ [20,21]. Из полученного материала приготовлялись плавленые поликристаллические или монокристаллические образцы Sm_{1-x}Gd_xS с x = 0.14 и 0.3. Синтез и плавка образцов проводилась в герметизированных танталовых контейнерах [20,21] в индукционной печи. Благодаря надежной герметизации контейнеров, в которых проводилась плавка и отжиг образцов, потери вещества были сведены к минимуму.

Образцы с x = 0.14 в специальных бомбах подвергались гидростатическому сжатию до давлений ~ 4 kbar. При этом в них происходил фазовый переход $B \rightarrow G$. "Золотая" фаза оставалась при 300 К стабильной неограниченно долго.

Рис. 1. Зависимость постоянной кристаллической решетки от состава в системе $\text{Sm}_{1-x}\text{Gd}_x\text{S.}$ 1 - x = 0.17(G) [5,7,9,10]; $2 - x \sim 0.13(G)$ (после приложения гидростатического давления ~ 4 kbar [7,14,15]); 3 - x = 0.15(B) [7,9,10].

Рис. 2. Зависимость постоянной кристаллической решетки от состава в Sm_{1-x}Gd_xS. Сплошная кривая — данные работы [8], точки — эксперимент для составов с x = 0.14: I — "черная" *B*-фаза [2]; 2 — "золотая" *G*-фаза (после гидростатического сжатия образца с x = 0.14(B) до ~ 4 kbar); x_{cr} — критическая концентрация Gd, при которой наступает фазовый переход $B \rightarrow G$; 3 - x = 0.3 ("золотая" *G*-фаза). *B* и *G* — соответственно области "черной" и "золотой" фаз.

Измерялись постоянные кристаллической решетки (*a*) при 300 K, теплопроводность и удельное электросопротивление (ρ) в интервале 160 ÷ 300 K в образцах Sm_{1-x}Gd_xS с x = 0.3 и 0.14 (в "черной" и "золотой" фазах).

Рентгеноструктурный анализ проводился на установке ДРОН-2 (в Си K_{α} -излучении), \varkappa и ρ измерялись на установке, подобной использованной в [22].

Результаты измерений приведены на рис. 2-5.

На рис. 2 представлены данные по постоянной кристаллической решетке для ряда составов $\text{Sm}_{1-x}\text{Gd}_x\text{S}$. Величина *а* для состава x = 0.3 (*G*-фаза) хорошо совпала с литературными данными [8]. Значение *а* для x = 0.14 (*G*-фаза) легли на экстраполированную зависимость a(x) из области x > 0.16 в область x < 0.16. На рис. 2 приведены также данные для x = 0.14 (*B*-фаза) из работы [2].

На рис. З приведены данные для $\rho(T)$. Для обоих составов *G*-фазы с x = 0.3 и 0.14 зависимость $\rho(T)$ носит металлический характер. Для сравнения на рис. З представлены данные для $\rho(T)$ *B*-фазы составов с x = 0.1 и x = 0.14, заимствованные из [2]. Надо отметить, что $\rho(T)$ для x = 0.14 (*G*-фаза) ведет себя иначе, чем $\rho(T)$

Рис. 3. Зависимость ρ от T для $\text{Sm}_{1-x}\text{Gd}_x\text{S}$ для различных значений x. 4 и 1 - x = 0.14 сответственно для B- и G-фазы; 2 - x = 0.3 (G-фаза); 3 - x = 0.1 (B-фаза). Данные для зависимостей 3 и 4 взяты из работы [2].

Рис. 4. Зависимость общей теплопроводности \varkappa_{tot} от температуры для образцов Sm_{1-x}Gd_xS с различными значениями *x*. *I* и 3 — x = 0.14 соответственно для *G*- и *B*-фазы; 2 — x = 0.3 (*G*-фаза). Данные для кривой 3 взяты из работы [2]. Крестики и кружки на кривых *I* и 2 соответствуют измерениям при понижении температуры от 300 к 200 К и ее повышении от 200 к 300 К.

Рис. 5. Зависимость полной (\varkappa_{tot}) и решеточкой составляющей (\varkappa_{ph}) теплопроводности от температуры для x = 0.14 *B*- и *G*-фаз Sm_{1-x}Gd_xS. *1* — *G*-фаза; *2* — *B*-фаза [2]. При вычислении электронной составляющей теплопроводности (\varkappa_e) предполагалось, что $L = L_0$. T_{cr} — температура обратного фазового перехода $G \to B$ для образца с x = 0.14(G).

для составов системы $\text{Sm}_{1-x}\text{Gd}_x\text{S}$, представленных на рис. 3. Похожее поведение $\rho(T)$ было обнаружено в [8] для $\text{Sm}_{1-x}\text{Gd}_x\text{S}$ состава x = 0.17 (*G*-фаза), находящегося вблизи "критической" концентрации $x_{\text{cr}} \sim 0.16$. Различие в величине ρ для образцов с x = 0.14 (*B*) и 0.14 (*G*) вероятно обусловлено меньшей подвижностью образцов с "золотой" фазой по сравнению с образцами "черной" фазы. Это относится и к образцу состава x = 0.3 (*G*).

На рис. 4 приведены экспериментальные данные для измеренной общей теплопроводности (\varkappa_{tot}) для "золотой" (x = 0.14 и 0.3) и "черной" (x = 0.14 [2]) фаз исследованной системы

$$\varkappa_{\rm tot} = \varkappa_{\rm ph} + \varkappa_e, \tag{1}$$

где $\varkappa_{\rm ph}$ и \varkappa_e — соответственно решеточная и электронная составляющие теплопроводности.

ке можно рассчитать из закона Видемана-Франца

$$\varkappa_e = L\rho/T.$$
 (2)

Для металлов и сильно вырожденных полупроводников при упругом рассеянии носителей тока

$$L = L_0 = 2.45 \cdot 10^{-8} \,\mathrm{W}\Omega/\mathrm{K}^2. \tag{3}$$

На рис. 5 приведены значения \varkappa_{tot} и \varkappa_{ph} для состава x = 0.14 в *G*- и *B*-фазах. Расчет \varkappa_e проводился по (2)

Рис. 6. Зависимость теплового сопротивления кристаллической решетки от температуры для различных значений *x* в $Sm_{1-x}Gd_xS$: *I*, *3* — *x* = 0.14 соответственно для *G*- и *B*-фазы [2]; *2* — *x* = 0.3 (*G*-фаза); *4*–*6* — соответственно данные для SmS, $Sm_{1.015}S$ [23,24] и $Sm_{0.9}Gd_{0.1}S$ (*B*-фаза) [2]. Точки на *I*, *2*, *3* взяты с усредненных экспериментальных кривых. При расчетах \varkappa_e предполагалось, что $L = L_0$.

с учетом (3). Данные для состава x = 0.14 *В*-фазы заимствованы из [2].

Наконец на рис. 6 приведены тепловые сопротивления кристаллической решетки $W_{\rm ph}(T) = 1/\varkappa_{\rm ph}(T)$ для образцов *G*-фазы с x = 0.14 и 0.3, для которых \varkappa_e рассчитывалась по (2) и (3). Для сравнения там же представлены данные для образцов *B*-фазы с x = 0.1 [2] и SmS [23,24].

Попытаемся теперь объяснить полученные экспериментальные данные. Из результатов, представленных на рис. 5 и 6, можно сделать вывод, что поведение $\varkappa_{\rm ph}(T)$ и $W_{\rm ph}(T)$ для образцов "черной" фазы (x = 0.1(B) и (0.14(B)) при выделении \varkappa_{ph} из общей теплопроводности $\varkappa_{\rm tot}$ в предположении, что в законе Видемана-Франца для $\varkappa_e L = L_0$ не противоречит существенной теории для решеточной теплопроводности: $\varkappa_{\rm ph} \sim T^{-1}$ для $T \ge \Theta$, где Θ — температура Дебая [25]. Этого нельзя сказать о $\varkappa_{ph}(T)$ и $W_{ph}(T)$ для образцов "золотой" фазы (x = 0.14(G) и x = 0.3(G)). Здесь наблюдается аномальное поведение этих параметров с изменением температуры. Что же является причиной обнаруженной аномалии? Трудно предположить, что это связано с $\varkappa_{\rm ph}(T)$. Вероятнее всего, эта аномалия возникает из-за неправильного определения же. Иными словами, в случае образцов "золотой" фазы $Sm_{1-x}Gd_xS L \neq L_0$.

Рассмотрим более подробно данные для состава x = 0.14(G). Большие сложности у исследователей возникают при выделении \varkappa_{ph} из данных для \varkappa_{tot} в случае, когда $\varkappa_{ph} \simeq \varkappa_e$. В нашей ситуации мы попытались решить эту проблему с помощью не вполне стандартного способа. Будем считать в первом приближении, что $\varkappa_{ph}(G)$ равно $\varkappa_{ph}(B)$. Тогда реальное значение L для состава x = 0.14(G) можно вычислить из следующего

Физика твердого тела, 2000, том 42, вып. 6

соотношения:

$$L = \frac{[\varkappa_{\text{tot}}(G) - \varkappa_{\text{ph}}(B)]\rho(G)}{T}.$$
(4)

Полученные согласно (4) значения $L/L_0(T)$ приведены на рис. 7, *a*. Величина $L/L_0(T)$ может быть больше или меньше, чем приведенная на рис. 7, а (кривая 1), соответственно если $\varkappa_{\rm ph}(G)$ будет меньше $\varkappa_{\rm ph}(B)$ (кривая 2 на рис. 7, а) из-за появления каких-либо дефектов в образце после фазового перехода $B \to G$ (хотя, как отмечалось выше, при формировании металлической фазы в этом образце за счет гидростатического сжатия в кристалле наблюдается лишь небольшой поворот кристаллитов [14]) или если $\varkappa_{ph}(G)$ будет больше $\varkappa_{ph}(B)$ (кривая 3 на рис. 7, а) из-за того, что при фазовом переходе происходит "уплотнение" кристаллической решетки, так как ее параметр при фазовом переходе уменьшается (рис. 2). Однако, как показали наши расчеты, величина $L/L_0(T)$ в обоих случаях при разумно выбранных параметрах не сильно отличается от значений, представленных на рис. 7, а кривой 1. Надо отметить, что во всех случаях наблюдается увеличение L/L_0 с ростом температуры.

Рис. 7. a — экспериментальное значение $L/L_0(T)$ для $Sm_{0.86}Gd_{0.14}S$ (*G*-фаза), точки — зависимость *I*. 2 и 3 — соответственно значения $L/L_0(T)$, если $\varkappa_{ph}(G)$ будет меньше или больше значений $\varkappa_{ph}(B)$; b — температурная зависимость L/L_0 . Точки — эксперимент для $Sm_{0.86}Gd_{0.14}S(G)$. Пунктир — $L/L_0 \sim T^2$ согласно [29] (см. ф-лу (7)). Приведено для сравнения наклонов теоретической и экспериментальной кривых $L/L_0(T)$.

На основании данных рис. 4 аналогичное поведение $L/L_0(T)$ можно ожидать и для состава с x = 0.3(G).

Попытаемся теоретически осмыслить полученные экспериментальные результаты.

Объяснение температурного поведения числа Лорентца L(T) в "золотой" фазе может быть дано в рамках теории изоструктурных валентных переходов первого рода в соединениях с переменной валентностью, недавно предложенной в работе [26]. Хотя эта теория была детально разработана для описания изоструктурного валентного перехода в соединениях $YbIn_{1-x}Ag_xCu_4$, ее общие результаты могут быть применимы и к $Sm_{1-x}Gd_xS$. Основная физическая идея этой теории заключается в том, что немагнитное металлическое состояние с нецелочисленной валентностью редкоземельных ионов (в Sm_{1-x}Gd_xS такими ионами являются ионы Sm; ионы Gd, как указывалось выше, выступают здесь лишь в качестве "химического пресса", их валентность до и после фазового перехода остается неизменной и равной +3) есть результат установления когерентности в кондовском рассеянии электронов (дырок) проводимости на локализованных электронах 4f-оболочек редкоземельных ионов. Вследствие этого эффекта, квазичастичные возбуждения имеют гибридную природу, являясь квантовой суперпозицией состояний из зоны проводимости и локализованных 4f-состояний. Такие квазичастицы принято называть "тяжелыми фермионами". В рамках теории [26] изоструктурный переход в Sm_{1-x}Gd_xS следует рассматривать как переход сильно вырожденный полупроводник-тяжелофермионный металл, т.е. "золотая фаза" есть состояние с тяжелыми фермионами. В пользу этого вывода могла бы говорить достаточно большая величина линейного коэффциента теплоемкости (γ), которая наблюдается во многих типичных тяжелофермионных соединениях. Однако сведений о γ в Sm_{1-x}Gd_xS, полученных из измерений теплоемкости, в литературе нет. Имеются данные о γ "золотой" фазы в Sm_{1-x}Y_xS, в котором Y, как и Gd в $Sm_{1-x}Gd_xS$, из-за различия ионных размеров Sm⁺² и Y⁺³ обеспечивает "химическое сжатие" самария, достаточное для перевода его при $x\gtrsim 0.2$ в состояние с переменной валентностью Sm^{+2.6}. Для состава с x = 0.33 в Sm_{1-x}Y_xS $\gamma = 50$ mJ/mole · K^2 [27].³ Можно предположить, что и в исследованных нами составах "золотой" фазы Sm $_{1-x}$ Gd $_x$ S величина γ будет того же порядка.

Еще одним аргументом в пользу высказанного предположения является усиленная парамагнитная восприимчивость электронной жидкости в $Sm_{1-x}Gd_xS$ "золотой" фазы в отличие от кюри-вейсовской восприимчивости ионов Sm^3 в "черной" фазе [5,6,23].

В рамках такой физической интерпретации "золотой" фазы можно объяснить поведение L(T), представленное на рис. 7. Действительно, согласно [29], в тяжелофермионном состоянии столкновения между тяжелыми

Рис. 8. Теоретическая зависимость L/L_0 от T [29]. Сплошная кривая: низкотемпературный участок отвечает зависимости (7), высокотемпературный участок — численный расчет [29]. Пунктир — возможная зависимость $L/L_0(T)$. Расчетные формулы для этого участка в [29] отсутствуют. T_0 — низкотемпературный масштаб Кондо.

фермионами для $T < T_0$ приводят к числу Лорентца

$$L(T) = L_0 + \alpha (T/T_0)^2,$$
 (5)

где α некоторый численный коэффициент, а T_0 — низкотемпературный масштаб Кондо (рис. 8). Величину T_0 можно оценить из данных для магнитной восприимчивости χ при T = 0

$$\chi(T=0) = \frac{C(1-\Delta n_f)}{T_0} \tag{6}$$

(где C — константа Кюри для ионов Sm⁺³, а Δn_f величина отклонения валентности ионов Sm от целочисленного значения +3) и из данных для линейного коэффициента теплоемкости

$$\gamma = \frac{1/3\pi^2 k_B^2 N_f}{T_0},$$
(7)

где $N_f = 1 - \Delta n_f$.

Оценка величины T_0 с помощью (7) при $\gamma \sim 50 \,\text{mJ/mole} \cdot K^2$ дает значение $T_0 \gtrsim 500 \,\text{K}$. Такая величина T_0 хорошо подходит для описания поведения $L/L_0(T)$ в системе с тяжелыми фермионами [29]. На правомерность использования этой модели указывает и близкая к квадратичной экспериментальная зависимость $L/L_0 \sim T^{1.7}$ (ср. с (5) [29]).

Основной вывод работы можно сформулировать в следующем виде. Для образцов "золотой" фазы $\text{Sm}_{1-x}\text{Gd}_x\text{S}$, в которых наблюдается гомогенная переменная валентность ионов самария, в интервале температур 160–300 К $L > L_0$. При этом L/L_0 возрастает с ростом температуры. Такое поведение $L/L_0(T)$ удалось объяснить в рамках теории [29], в которой изоструктурный фазовый переход $B \to G$ рассматривался как переход сильно вырожденный полупроводник–тяжелофермионный металл.

 $^{^3}$ Для "золотой" фазы SmS, полученной при гидростатическом сжатии образца до 7–12 kbar, из данных по измерению теплоемкости γ составила \sim 145 mJ/mole \cdot K^2 [28].

Авторы выражают благодарность Н.Ф. Картенко за проведение рентгеноструктурных исследований образцов.

Список литературы

- A. Jayaraman, E. Bucher, P. Dernier, L.D. Longinotti. Phys. Rev. Lett. **31**, *11*, 700 (1973).
- [2] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисерек, Я. Муха, А. Ежовский. ФТТ 41, *1*, 26 (1999).
- [3] В.А. Шабуров, А.И. Егоров, Г.А. Крутов, А.С. Рыльников, А.Е. Совестнов, О.И. Сумбаев. ЖЭТФ 68, 1, 326 (1975).
- [4] А.И. Егоров, Е.В. Петрович, Ю.П. Смирнов, А.Е. Совестнов, О.И. Сумбаев, В.А. Шабуров. Изв. АН СССР. Сер. физ. 40, 2, 395 (1976).
- [5] И.А. Смирнов, В.С. Оскотский. УФН 124, 2, 241 (1978).
- [6] Д.И. Хомский. УФН 129, 3, 443 (1979).
- [7] A. Jayaraman, P. Dernier, L.D. Longinotti. Phys. Rev. B11, 8, 2783 (1975).
- [8] M. Ohashi, T. Kaneko, H. Yoshido, S. Abe. Physica B86–88, 224 (1977).
- [9] S.P. Nikanorov, Yu.A. Burenkov, A.B. Lebedev, A.V. Golubkov, T.B. Zhukova, I.A. Smirnov. Phys. Stat. Sol. (a) 105, K103 (1988).
- [10] Ю.А. Буренков, А.В. Голубков, В.В. Жданова, Т.Б. Жукова, А.Б. Лебедев, С.П. Никаноров, И.А. Смирнов. ФТТ 33, 8, 2350 (1991).
- [11] A. Jayaraman, V. Narayanamurti, E. Bucher, R.G. Maines. Phys. Rev. Lett. **25**, 368 (1970).
- [12] И.Л. Аптекарь, В.И. Ращупкин, Е.Ю. Тонков. ФТТ 23, 6, 1589 (1981).
- [13] В.И. Ращупкин, И.Л. Аптекарь, В.К. Гартман, Е.Ю. Тонков. ФТТ **20**, *3*, 799 (1978).
- [14] Б.А. Абдикамалов, И.Л. Аптекарь, В.М. Сергеева, Е.Ю. Тонков. ФТ 21, *1*, 187 (1979).
- [15] I.A. Smirnov. J. de Phys. Coll. C 5, Suppl. 41, 6, C5–143 (1980).
- [16] А.В. Голубков, А.И. Егоров, Т.С. Орлова, В.М. Сергеева, Б.И. Смирнов, И.А. Смирнов. ФТТ 29, 12, 3683 (1987).
- [17] A.V. Golubkov, V.M. Egorov, T.S. Orlova, V.M. Sergeeva,
 B.I. Smirnov, I.A. Smirnov. Phys. Stat. Sol. (a) 105, K93 (1988).
- [18] Е.В. Шадричев, Л.С. Парфеньева, В.И. Тамарченко, О.С. Грязнов, В.В. Сергеева, И.А. Смирнов. ФТТ 18, 8, 2380 (1970).
- [19] О.В. Фарберович. ФТТ 21, 11, 3434 (1979).
- [20] А.В. Голубков, Т.Б. Жукова, В.М. Сергеева. Изв. АН СССР. Неорган. материалы 2, 11, 77 (1966).
- [21] А.В. Голубков, В.М. Сергеева. Препринт Института физики металлов УНЦ АН СССР, Свердловск (1977). 28 с.
- [22] A. Jezowski, J. Mucha, G. Pompe. J. Phys. D: Appl. Phys. 20, 1500 (1987).
- [23] В.С. Оскотский, И.А. Смирнов. В сб.: Редкоземельные полупроводники / Под ред. В.П. Жузе и И.А. Смирнова. Наука, Л. (1977). 108 с.
- [24] V.P. Zhuze, E.V. Goncharova, N.F. Kartenko, T.I. Komarova, L.S. Parfeneva, V.M. Sergeeva, I.A. Smirnov. Phys. Stat. Sol. (a) 18, 63 (1973).
- [25] В.С. Оскотский, И.А. Смирнов. Дефекты в кристаллах и теплопроводность. Наука, Л. (1972). 159 с.
- [26] A.V. Goltsev, G. Bruls. Phys. Rev. B (submitted).

- [27] S. Von Molnar, T. Penney, F. Holtzberg. J. de Phys. Coll. C 4, Suppl. 37, 10, C241 (1976).
- [28] S.D. Bader, N.E. Phillips, D.B. McWhan. Phys. Rev. B7, 4686 (1973).
- [29] V.I. Belitsky, A.V. Goltsev. Physica B172, 459 (1991).