05;06;12

Фазовые переходы и электрофизические свойства в системе твердых растворов ниобатов натрия-лития-стронция

© Л.А. Резниченко, О.Н. Разумовская, Л.А. Шилкина, А.Я. Данцигер, С.И. Дудкина, И.В. Позднякова, В.А. Сервули

Научно-исследовательский институт физики, Ростовский государственный университет, 344090 Ростов-на-Дону, Россия E-mail: larisa@riphys.rnd.su

(Поступило в Редакцию 19 октября 1999 г. В окончательной редакции 5 мая 2000 г.)

Проведены дополнительные исследования твердых растворов тройной системы (Na, Li, Sr_{0.5})NbO₃, которые позволили уточнить ее фазовую диаграмму и изучить электрофизические параметры в широкой области концентраций компонентов. Получены составы, представляющие интерес для применений в высокочувствительных и высокочастотных преобразователях.

Введение

В работе [1] приведена фазовая диаграмма системы (Na, Li, Sr_{0.5})NbO₃ и кратко перечислены ее основные электрофизические свойства. В настоящей работе продолжено изучение фазовой диаграммы этой системы, позволившее обнаружить дополнительные фазы и морфотропные области (MO). Кроме этого, детально изучены концентрационные зависимости электрофизических параметров твердых растворов (TP) системы и показана их связь со структурными параметрами, в частности с однородным параметром деформации δ [2].

Изучено шесть сечений этой системы, соответствующих содержанию 2-50 mol% *z*-компоненты системы Sr_{0.5}NbO₃. В каждом сечении синтезированы составы с содержанием 2-15 mol% LiNbO₃, образующие *y*-сечения. Режимы синтеза и спекания образцов приведены в [1].

Экспериментальные результаты и их обсуждение

На треугольнике Гиббса (рис. 1) представлена исследованная часть фазовой диаграммы тройной системы ниобатов натрия–лития–стронция, прилегающая к вершине NaNbO₃. Тонкими линиями нанесены сечения *у* и *z*, жирными — граничные линии областей различной симметрии (одно- и двухфазных).

Вид фазовой диаграммы тройной системы определился фазовыми диаграммами бинарных систем. В системе (100 - z)NaNbO₃-zSr_{0.5}NbO₃, по данным, полученным в настоящей работе, в узкой области концентраций до $z \leq 2$ твердые растворы имеют ромбическую симметрию (аналогичную NaNbO₃) с учетверенным по оси *b* параметром элементарной ячейки (фаза M_4), далее при 2 < z < 30 кратность ячейки понижается — учетверенная по оси *b* ячейка переходит в удвоенную (фаза M_2). В интервале $30 \leq z \leq 50$ кристаллизуют-

ся ТР кубической симметрии с удвоенным параметром (фаза K_2). Эти результаты отличаются от опубликованных ранее другими авторами. Так, по данным [3], при $0 < z \leq 30$ ТР имеют моноклинную симметрию, а при $30 \leq z \leq 50$ — тетрагональную. Фазовые переходы в системе (100 - y)NaNbO₃-yLiNbO₃ исследованы ранее в [4] и уточнены в [5].

Следует отметить, что фазовая диаграмма рассматриваемой системы имеет менее сложный характер, чем описанная, например, в работе [6] для системы (Na, Li, Pb_{0.5})NbO₃.

В системе (Na, Li, Sr_{0.5})NbO₃ выделяется широкая MO_1 ($M_2 + Rh$) (Rh — ромбоэдрическая фаза) и узкая MO_2 ($Rh + M_2$), в окрестности которых следует ожидать появления экстремальных значений структурных и электрофизических параметров. Что касается таких же узких MO_3 ($M_4 + M_2$) и MO_4 ($K_2 + M_2$), то они расположены за пределами изученных TP, в связи с чем их влияние на ход характеристик не анализируется.

Рис. 1. Фазовая диаграмма тройной системы (Na, Li, Sr_{0.5})NbO₃ (1 — гетерогенная область).

Рис. 2. Зависимости структурных и электрофизических характеристик твердых растворов системы (Na, Li, Sr_{0.5})NbO₃ от содержания LiNbO₃ для сечения z = 15 mol% Sr_{0.5}NbO₃ (1 - то же, что и на рис. 1).

Рассмотрим несколько *z*- и *y*-сечений, наиболее характерных для описываемой системы. На рис. 2 показаны концентрационные зависимости структурных и электрофизических параметров для z = 15: на рис. 2, *a* приведены¹ δ , $\varepsilon_{33}^T/\varepsilon_0$, $\varepsilon/\varepsilon_0$, K_p , d_{31} , g_{31} , на рис. 2, *b* — tg δ , Q_M , V_R , Y_{11}^E . Штриховыми линиями на рисунке выделены широкая MO₁ и узкая MO₂. Видно, что диэлектрические проницаемости и параметр g_{31} проходят через максимумы у противоположных границ MO₁, как это обычно бывает в сегнетоэлектрических системах. Положения максимумов K_p , d_{31} и $\varepsilon_{33}^T/\varepsilon_0$ совпадают. Им же соответствуют минимальные значения δ внутри MO₁. Что касается остальных параметров (рис. 2, *b*), то ход некоторых из них согласуется с изменением степени сегнетожесткости TP, а именно параметры V_R и Y_{11}^E изменяются в направлении, противоположном изменению $\varepsilon_{33}^T/\varepsilon_0$. Однако изменения tg δ и Q_M нельзя объяснить с этой точки зрения. Следует отметить, что зависимости последних двух параметров испытывают изломы на границе между MO₁ и фазой *Rh* в отличие от других параметров.

В противоположность рассмотренному *z*-сечению в других сечениях этого типа наблюдается значительная изрезанность характеристик, обусловленная существованием экстремальных значений некоторых параметров и на значительном удалении от указанных МО, которую трудно связать лишь с положением последних. Так, на рис. 3 приведены зависимости параметров для сечения z = 10. Видно, что параметры $\varepsilon_{33}^T/\varepsilon_0$, K_p , d_{31} и g_{31} имеют по два максимума: первые — вблизи границ MO₁, вторые — далеко за ее пределами при 3–6 mol%

 $^{{}^{1} \}varepsilon_{33}^{T}/\varepsilon_{0}, \varepsilon/\varepsilon_{0}$ — относительные диэлектрические проницаемости, K_{p} — коэффициент электромеханической связи, d_{31}, g_{31} — пьезоэлектрические параметры, tg δ — тангенс угла диэлектрических потерь, Q_{M} — механическая добротность, V_{R} — скорость звука, Y_{11}^{E} — модуль Юнга.

Рис. 3. Зависимости структурных и электрофизических характеристик твердых растворов системы (Na, Li, Sr_{0.5})NbO₃ от содержания LiNbO₃ для сечения z = 10 mol% Sr_{0.5}NbO₃ (*1* — то же, что и на рис. 1).

LiNbO₃. Примерно в этой же области концентраций LiNbO₃ при анализе спектров комбинационного рассеяния света соответствующих ТР обнаружены эффекты, связанные с присутствием в ТР подсистем с разной степенью композиционного упорядочения разноименных ионов в *A*-подрешетках. Для выяснения влияния степени упорядочения указанных ионов на электрофизические параметры рассматриваемых ТР нами проанализированы данные работы [7] о причинах высоких значений диэлектрической проницаемости в сложных оксидах $A(B'_{1/2}B''_{1/2})O_3$ с разупорядоченной структурой. В [7] делается вывод, что в упорядоченной структуре мелкие ионы *B*, находящиеся в регулярном окружении более

крупных ионов, имеют значительно меньшее свободное пространство для перемещений, чем в разупорядоченной структуре. Поэтому при приложении электрического поля мелкие ионы в разупорядоченной структуре значительно легче перемещаются без разрушения кислородного каркаса, чем в упорядоченной. Это приводит к большей поляризации на единицу электрического поля и, следовательно, к большим величинам диэлектрической проницаемости. По-видимому, таким же механизмом возрастания диэлектрической проницаемости и зависящих от нее электрофизических параметров можно объяснить наблюдающиеся в настоящей работе экстремумы на границах вышеупомянутых подсистем с разной степенью упорядочения.

Рис. 4. Зависимости структурных и электрофизических характеристик твердых растворов системы (Na, Li, Sr_{0.5})NbO₃ от содержания Sr_{0.5}NbO₃ для сечения y = 3 mol% NiNbO₃.

Журнал технической физики, 2000, том 70, вып. 11

Среди у-сечений также можно выделить сечения с изрезанными и с более плавными характеристиками. Пример сечения с изрезанным ходом параметров y = 3 (рис. 4). Здесь внутри MO₁ (вблизи левой ее границы) расположены максимумы g_{31} , d_{31} , K_p , а максимум $\varepsilon_{33}^T/\varepsilon_0$ (незавершенный) расположен вне MO₁ вблизи ее правой границы. Кроме этого, вдали от MO₁ в районе 10 mol% LiNbO₃ находятся вторые максимумы K_p и g_{31} , которые, возможно, связаны с сочетанием возрастающего параметра δ_{M_2} и резко снижающейся плотности ρ (рис. 4).

Пример сечения с более плавным ходом параметров — y = 6 mol% LiNbO₃ (рис. 5). Незавершенный максимум $\varepsilon_{33}^T/\varepsilon_0$ смещен за пределы правой границы MO₁, максимумы g_{31} и K_p расположены приблизительно в середине MO₁, где δ минимальна. Дальнейший подъем g_{31} и K_p в фазе M_2 сопровождается ростом δ .

Параметры некоторых составов системы (Na, Li, Sr_{0.5})NbO₃

№ состава	$T_k, \ ^{\circ}\mathrm{C}$	$arepsilon_{33}^T/arepsilon_0$	K_p	$g_{31},$ mV · m/N	<i>Q</i> _M	<i>V_R</i> , km/s
1	320	127	0.193	10.0	650	5.7
2	338	107	0.215	13.7	40	4.9
3	287	110	0.296	15.8	295	5.4

Из наиболее интересных свойств отдельных ТР рассмотренной системы следует выделить сочетание весьма низких значений диэлектрической проницаемости ($\varepsilon_{33}^T/\varepsilon_0 \approx 105-125$) с достаточно высоким коэффициентом электромеханической связи ($K_p \approx 0.2-0.3$), что приводит к высоким значениям коэффициента g_{31} , характеризующего чувствительность к механическим напряжениям. Такие материалы, как известно [8,9], могут эффективно использоваться в акселерометрах, дефектоскопах, приборах медицинской диагностики. Низкая диэлектрическая проницаемость благоприятна для использования материалов в высокочастотных преобразователях [10]. В таблице приведен ряд составов с указанными свойствами. Расположены они в порядке возрастания g_{31} .

Некоторые составы системы имеют повышенную анизотропию коэффициентов электромеханической связи $(K_t/K_p \ge 3)$, что позволяет использовать их в акселерометрах с избирательной чувствительностью. Кроме этого, отдельные TP обладают высокими температурами Кюри $(T_k \ge 300^{\circ}\text{C})$, что расширяет диапазон их рабочих температур. Наконец, как и большинство ниобатных материалов [9], изученные TP обладают высокой скоростью звука, что упрощает технологию изготовления элементов для BЧ преобразователей и обеспечивает хорошее согласование их с внешней цепью, и низкой плотностью, что позволяет использовать эти TP в устройствах, для которых весовые характеристики являются решающими.

Заключение

Проведены прецизионные рентгенографические исследования твердых растворов, которые позволили более точно установить фазовые переходы в тройной системе (Na, Li, Sr_{0.5})NbO₃. Установлена связь между структурными и электрофизическими параметрами твердых растворов (Na, Li, Sr_{0.5})NbO₃ в широкой области концентрации компонентов и более детально интерпретированы особенности их электрофизических свойств. Получены составы с низкой диэлектрической проницаемостью и высокой чувствительностью к механическому напряжению, перспективные для применений в высокочувствительных преобразователях, эксплуатируемых в высокочастотном диапазоне.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 99-02-17575).

Список литературы

- [1] Иванова Л.С., Резниченко Л.А., Разумовская О.Н., Шилкина Л.А. // Изв. АН СССР. Сер. Неорган. материалы. 1987. Т. 23. № 3. С. 525–526.
- [2] Фесенко Е.Г., Филипьев В.С., Куприянов М.Ф. // ФТТ. 1969. Т. 11. Вып. С. 466–471.
- [3] Tennery V.J. // J. Amer. Cer. Soc. 1996. Vol. 49. N 7. P. 376– 379.
- [4] Шилкина Л.А., Резниченко Л.А., Куприянов М.Ф., Фесенко Е.Г. // ЖТФ. 1977. Т. 47. Вып. 10. С. 2173–2178.
- [5] Шилкина Л.А., Позднякова И.В., Дудкина С.И., Резнииенко Л.А. и др. // Сб. тез. 8-го Международного симпозиума по физике сегнетоэлектриков-полупроводников (IMFS-8). Ростов-на-Дону, 1998. С. 190–191.
- [6] Резниченко Л.А., Разумовская О.Н., Данцигер А.Я. и др. // Сб. докл. Международной научно-практической конф. "Пьезотехника-97". Обнинск, 1997. С. 197–207.
- [7] Nimura S., Uchino K. // Ferroelectrics. 1982. Vol. 41. N 1. P. 117–132.
- [8] Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н. Новые пьезокерамические материалы. Ростов-на-Дону: Изд-во Ростовского ун-та, 1983. 156 с.
- [9] Данцигер А.Я., Разумовская О.Н., Резниченко Л.А., Дудкина С.И. Высокоэффективные пьезокерамические материалы. Оптимизация поиска. Ростов-на-Дону: Пайк, 1995. 92 с.
- [10] Фесенко Е.Г., Данцигер А.Я., Резниченко Л.А. и др. // ЖТФ. 1982. Т. 52. Вып. 11. С. 2262–2266.