04;12

Колебания ($f < 1 \, \text{MHz}$) в электроразрядной ловушке — галатее ЭРЛ-М ("Авоська")

© А.И. Морозов, А.И. Бугрова, А.С. Липатов, В.К. Харчевников

РНЦ Курчатовский институт Московский институт радиотехники, электроники и автоматики

Поступило в Редакцию 22 марта 2000 г.

Описаны наблюдаемые в эксперименте две моды колебаний ($f_1 \sim 25\,{\rm kHz}$, $f_2 \sim 250\,{\rm kHz}$), и указана вероятная природа этих колебаний.

1. Квадрупольная ловушка — галатея "Авоська" (ЭРЛ-М), функционирующая в электроразрядном режиме, уже описана в ряде наших публикаций [1–3]. Для удобства чтения на рис. 1 приведена схема этой ловушки с распределением *z*-компоненты магнитного поля вдоль радиуса при z = 0.

В статьях [1–3] приводились усредненные по времени характеристики разряда и параметры плазмы в "Авоське". О колебаниях в этой системе очень коротко сказано в тезисах доклада [4]. В настоящей статье приводятся экспериментальные данные о колебаниях f < 1 MHz в "барьерном" режиме (ранее [1,2] этот режим назывался разрядом с "мантией". Он реализуется, когда катод помещается в окрестности нулевого магнитного поля), и дается их наиболее вероятная интерпретация.

Исследование колебаний проводилось при работе на ксеноне с расходом $\dot{m} = 2 \text{ mg/s}$, разрядном напряжении и токе $U_p = 200 \text{ V}$, $J_p = 200 \text{ mA}$ и барьерном поле $H_1 = 20 \text{ Oe}$. Давление в камере по воздуху $\sim 2 \cdot 10^{-4} \text{ mm}$ Hg. В этом режиме параметры плазмы достигают следующих значений: электронная температура $T_{e \max} \sim 20 \text{ eV}$, $n_{\max} \sim 9 \cdot 10^{10} \text{ cm}^{-3}$, глубина потенциальной ямы $|\varphi_{\min}| \sim 50 \text{ V}$.

2. Осциллограммы разрядного тока J_1^{\sim} сразу выявляют наличие двух типов весьма регулярных колебаний (рис. 2), это колебания с частотами $f_1 \approx 25 \,\mathrm{kHz}$ и $f_2 \approx 250 \,\mathrm{kHz}$.

3. Колебания с частотой f_1 .

48

Рис. 1. Конструкция ловушки (*a*), зависимость $H_z(r, z = 0)$ (*b*): 1 — магнитные катушки, 2 — катод, 3 — трубка напуска Хе, H_1 — барьерное поле.

Эти колебания, как было предположено в [3], являются "сбросовыми", так как препятствуют переполнению ловушки за счет постоянно идущей ионизации подаваемого газа: накапливающаяся плазма достигает границы МГД-устойчивости (поверхности Окавы [5]) и конвективным образом выбрасывается из ловушки. В пользу этого предположения говорят следующие факты.

а) Близость f_1 к обратному времени накопления ионов в ловушке $f_1 \sim \frac{1}{\tau} = n_0 \langle \sigma V \rangle \sim 30$ kHz. Здесь n_0 — концентрация ксенона в камере (~ $3 \cdot 10^{12}$ cm⁻³), $\langle \sigma V \rangle \sim 10^{-8}$ cm³/s. Наличие трубки, подающей ксенон, слабо влияет на параметры разряда по сравнению с разрядом при том же давлении в камере, но без трубки с газом.

4 Письма в ЖТФ, 2000, том 26, вып. 15

Рис. 2. Осциллограммы колебаний разрядного тока при развертке $T = 20 \,\mu s$ (*a*) и $T = 5 \,\mu s$ (*b*) с подавленной низкой частотой.

б) Синхронность колебаний ионного и электронного токов на зонды и близость с точностью эксперимента ~ 30% их относительных (J^{\sim}/J^{\parallel}) амплитуд (рис. 3).

 в) Нарастание относительного уровня колебаний зондовых токов при перемещении зонда от центра плазменного шнура к периферии.

г) Синхронность провала ионного тока на зонд внутри плазменного объема с всплеском ионного тока из ловушки, фиксируемого ориентированным по радиусу зондом.

4. Выбрасываемый из ловушки ионный поток, как показали прямые эксперименты с ориентированными зондами, имеет не только радиальную, но и азимутальную компоненты скорости. Эта компонента возникает, по-видимому, под действием азимутального электрического поля. Такое поле обнаружено экспериментально и связано с зависимостью сбросовой волны от азимута.

Письма в ЖТФ, 2000, том 26, вып. 15

Рис. 3. Осциллограммы колебаний ионного (a, b) и электронного (c, d) токов на зонд при условиях, аналогичных рис. 2.

5. Колебания с частотой f₂.

Сегодня имеется сравнительно небольшое количество опытных данных, относящихся к этим колебаниям. Однако факт регулярности этих колебаний, масштаб $T_e \sim T_i \sim 20 \, {\rm eV}$, а также поперечный размер плазменного объема позволяют высказать предположение, что эти колебания представляют собой "звон" объема на ионно-звуковой моде. Действительно, длина волны колебаний

$$\lambda = \frac{c_3}{f_2} = \sqrt{\frac{k(T_e + T_i)}{M}} \frac{1}{f_2} \approx 3 \,\mathrm{cm}$$

В эту формулу подставлены $T_e = T_i = 20 \text{ eV}$, M — масса иона ксенона $\sim 2 \cdot 10^{-22} \text{ g}$, $f_2 = 200 \text{ kHz}$. Полученное значение λ близко к эффективному поперечному размеру плазменного объема, что, по нашему мнению, является сильным аргументом в пользу высказанной гипотезы.

Работа выполнена при поддержке Минатома.

4* Письма в ЖТФ, 2000, том 26, вып. 15

Список литературы

- Бугрова А.И., Липатов А.С., Морозов А.И., Харчевников В.К. // Письма в ЖТФ. 1992. В. 8. С. 1–4.
- [2] Бугрова А.И., Липатов А.С., Морозов А.И., Харчевников В.К. // Физика плазмы. 1993. Т. 19. № 12. С. 1411–1417.
- [3] Морозов А.И., Савельев В.В. // УФН. 1998. № 11. Т. 168. С. 1153–1194.
- [4] Бугрова А.И., Липатов А.С., Морозов А.И., Харчевников В.К. // Тез. докл. XXVI Звенигородской конференции по физике плазмы и УТС. Звенигород, 1999. Т. 18. С. 83.
- [5] Voorhies H.G., Ohkawa T. // Physics of Fluids. 1968. V. 11. N 7. P. 1572-1578.

Письма в ЖТФ, 2000, том 26, вып. 15