05;12 Аморфный шунгитовый углерод естественная среда образования фуллеренов

© В.А. Резников, Ю.С. Полеховский

С.-Петербургский государственный университет

Поступило в Редакцию 6 марта 2000 г.

Сравнительным анализом величин плотности, пористости и межмолекулярного пространства в высокоуглеродистых шунгитах, графите, стеклоуглероде и фуллерите C_{60} получена оценка концентрации фуллеренов в шунгитах, которая согласуется с результатами электрохимической экстракции и экстракции полярными растворителями. Низкий выход фуллеренов в экстрактах неполярными растворителями объясняется полярностью, большой энергией адсорбции фуллеренов и их соединений.

Разработанные к началу 90-х гг. методы синтеза фуллеренов С₆₀ и С70 допускали их присутствие в углеродсодержащих породах. Непосредственно после опубликования достоверных данных о физикохимических свойствах С₆₀ и С₇₀ они были обнаружены в высокоуглеродистых шунгитах [1,2], которые пока остаются единственным природным объектом с ароматическими углеродными молекулами. До настоящего времени не проводились исследования по определению концентрации, молекулярного состава и распределению фуллеренов или их производных в шунгитах (sh) в зависимости от структуры углеродного вещества (C_{sh}). Такая информация полезна для выяснения природы C_{sh} и материального носителя медико-экологических свойств sh. В [3] высказывалось предположение о взаимосвязи свойств C_{sh} , его фуллереноподобной структуры и наличия в нем фуллеренов (C_n). В [4] было высказано предположение о возможности единого механизма образования С_{sh} и С_n. Такие предположения правомерны, если концентрация фуллеренов находится во взаимосвязи со структурой C_{sh} и по крайней мере в отдельных типах коррелирует с концентрацией полностью аморфизированной С-фазы [3,5] как наиболее вероятным материалом для синтеза С_n. Нами были приведены доводы [6] в пользу промышленно значимой концентрации C_n в sh-3 (около 1%). В настоящей работе

94

Рис. 1. Спектры люминесценции (кривые *1*, *2*) и возбуждения на полосе 410 nm (кривыя *3*) и на полосе 497 nm (кривая *4*). Кривая *2* — временная модификация.

проводится сравнительный анализ ряда макрофизических свойств C_{sh} и стеклоуглерода (СТУ) как ближайшего структурного аналога [7,8], а также свойств C_{60} , что позволяет дать оценку предельной концентрации C_n и модель метаморфизма углеродного вещества.

При толщине углеродной клетки около 1.0 Å [9] и ковалентном радиусе $C^0 = 0.77 \text{ Å}$ [10] атомы в составе C_{60} можно рассматривать как C^+ в окружении делокализованных π -состояний ($C^+ \cdot e^-$). В рамках сольватированного состояния С₆₀ в растворах [11] при ее резонансном возбуждении должны происходить переходы с энергией сродства к электрону $E_a C^+$, которая по методике [12] оценивается как $3 \cdot E_a C^0 = 3.81 \text{ eV}$. С учетом колебательных переходов в C₆₀ (272, 496 и 776 ст⁻¹ [11,13]) эта величина соответствует энергетическому положению максимумов *п*-полос в спектрах растворов. Согласно квантовохимическим расчетам [14], энергетическое положение максимума *π*полосы неассоциированной молекулы C₆₀ оценивается в 3.43 eV, что на 65 meV меньше работы выхода [15]. С точностью до 3 meV разница в указанных расчетных величинах совпадает с энергией "дыхательных" колебаний высокосимметричной C₆₀. Величина 3.435 eV является среднеэнергетической между $E_a C^0 = 1.27 \text{ eV} [10]$ и 5.6 eV как ионизационным потенциалом С₆₀, чем подтверждается модель С₆₀-взаимосвязанные С⁺ в окружении *π*-электронного облака.

Для неассоциированной молекулы C_{60} правомерна аналогия между делокализованными π -электронами и s-d электронными состояниями малоразмерных металлических частиц в форме икосаэдра [9,13]. Так,

потенциал ионизации и энергия поверхностного плазмона Ag₁₃ [16] практически совпадают с соответствующими значениями С₆₀, а максимум полосы плазменного поглощения Ag₆ как элементарной частицы с элементами металлической связи [17] совпадает с расчетным значением максимума л-полосы неассоциированной молекулы С₆₀. Отличием С₆₀ от малых металлических частиц является поверхностное распределение электронной плотности и возможность изменения формы углеродной клетки. Рассеяние электромагнитных волн на таких объектах определяется коллективными колебаниями электронов проводимости [18], а плазменные колебания разбиваются на $\pi - \sigma$ и π -состояния [9,15,19]. При адсорбации на электронейтральной поверхности происходит локализация *π*-состояний и С₆₀, как частица твердого тела теряет свои металлические свойства. В этом случае в возбужденной частице с электронно-акцепторными свойствами должна существовать связанная электронно-дырочная пара. Действительно, спектры люминесценции адсорбатов С₆₀ в микропористом стекле или на поверхности полимерной молекулы содержат полосы с максимумами 365, 368 и 410, 433 nm, смещенные относительно полос 361 и 407 nm на характерные колебательные состояния С₆₀ (рис. 1).

Термическая стабильность C_{60} , высокая электроотрицательность и поляризуемость молекулы [15,19] позволяют рассматривать ее как адатом большого радиуса со свойствами элементов VII группы. Так, подобно йоду, C_{60} растворим в неполярных растворителях и имеет близкие величины энергии ионизации и E_a с At [10].

Тем самым в зависимости от окружения C_{60} может обладать не только молекулярными свойствами, но и свойствами металлической или полупроводниковой частицы, а также галоидного атома, что предполагает возможность образования соединений с различным типом химической связи, большую энергию адсорбации на электронно-донорных поверхностях и эффективность твердофазного взаимодействия с ионными или/и молекулярными соединениями [20].

Уменьшение межмолекулярного расстояния в кристаллах C_{60} на 10% относительно межслоевого расстояния в графите (3.35–3.36 Å) допускает обменное $\pi-\pi$ взаимодействие. Высокая подвижность около положения равновесия в кристаллической решетке [13] позволяет допустить, что за счет смещения углеродной клетки от равновесного положения одна из соседних молекул будет исполнять роль донора, а другая — акцептора электронной плотности. Смещение π -состояний молекулы донора на низкоэнергетический уровень молекулы акцептора

97

В неассоциированной С₆₀ толщина электронной оболочки может рассматриваться как динамически равновесная величина между орбитальным и ковалентным размерами С-атомов (1.39 Å). В этом случае отношение объема, занимаемого С-атомами к объему молекулы, ≅ 0.78. Та же величина отвечает отношению плотностей фуллерита C_{60} (1.697 g/cm³) и графита ($\cong 2.25$ g/cm³), если учитывать разницу в длинах С-С связей [5,13]. При эквивалентном поверхностном заполнении всего объема С₆₀ плотность (р) фуллерита возрастает до р графита. Следовательно, объем межслоевых расстояний в графите эквивалентен межмолекулярному объему в фуллерите. Особенность структуры С₆₀ — пентаэдры, равномерно распределенные по поверхности углеродной клетки, когда каждый атом принадлежит двум шестии одному пятиугольнику. Это означает, что пентаэдры — результат самоорганизации возбужденных углеродных молекул. На колективный характер процесса самоорганизации С-молекул в ароматическую структуру указывает совпадение энергии синтеза C₆₀ и $\pi - \sigma$ плазмона [13,14]. Там же отмечается, что синтез С-кластеров в фуллерены происходит эффективно, если при их контакте выделяется энергия в несколько eV — величина, характерная для *E_a* линейных С-молекул [21]. Следовательно, возбужденные аморфизированные графитоподобные кластеры и цепочечные молекулы в структуре C_{sh} могут формироваться в ароматические фуллереноподобные молекулы. Об этом также свидетельствует пиролитический синтез фуллеренов из цепочечных углеводородов в бескислородной атмосфере и слабом взаимодействии с окружением.

Помимо рентгеноаморфности в расположении графитоподобных сеток и совпадении основных особенностей ИК-спектров в области 400–1600 сm⁻¹ (см. рис. 2, кривые 1, 2), sh-1 и СТУ имеют близкие значения прочностных характеристик, коэффициентов термического расширения, величин теплоемкости и электропроводности [5], тогда

⁷ Письма в ЖТФ, 2000, том 26, вып. 15

Рис. 2. ИК-спектры поглощения: *1* — стеклоуглерод; *2* — шунгит-1; *3* — С₆₀ в оболочке КСІ; *4* — твердая аморфизированная фаза С₆₀-метилпирролидон.

как величины теплопроводности отличаются в 6–7 раз. Относительно низкая теплопроводность *sh*-1 при близких значениях большинства макрофизических параметров означает, что на межфазных поверхностях существует множество теплорассеивающих частиц. Средняя от величин ρ графита и фуллерита C₆₀ (290 K) на 0.02 g/cm³ превышает ρ СТУ. Это отличие связано с присутствием в структуре СТУ полностью амортизированной фазы [5], для которой ρ может сопоставляться с ρ сажи (2.1–2.18 g/cm³). Следовательно, структура СТУ может рассматриваться как суперпозиция графитоподобных пакетов (ГПП) с предельными геометриями изгиба гексагональных слоев.

Отношение предельных значений межплоскостных расстояний в ГПП (3.65 Å для C_{sh} с глобулярной морфологией и 3.41 Å для C_{sh} пленочного типа [3]) совпадает с отношением ρ соответствующих типов *sh*-1 (1.83–1.96 g/cm³), т.е. именно пакеты являются основной структурной единицей C_{sh} . Увеличение межслоевого расстояния в ГПП на 2–7% относительно межслоевого расстояния в кристаллическом графите предполагает уменьшение ρ до 2.1–2.2 g/cm³. В этой оценке не

учитывается изменение ρ за счет 2–4% отличия межатомных расстояний в структурах C_{sh} и графита, так как изогнутость и малые размеры ГПП неизбежно связаны с наличием углеродных вакансий. При пористости C_{sh} 10–12% [5] усредненная ρ ГПП соответствует вышеуказанной ρ *sh*-1. Средняя величина от ρ ГПП и фуллерита C_{60} (1.9–1.95 g/cm³) попадает в пределы значений ρ *sh*-1. При среднем размере С-глобул около 10 nm совпадение свободного объема C_{60} и С-глобулы достигается для четырехслойного пакета, чем обосновывается фуллереноподобие структуры C_{sh} [3,4,22]. Меньшее число спектральных особенностей в ИК-спектре *sh*-1 в сравнении с СТУ (см. рис. 2, кривые *1*, *2*) указывает на большую упорядоченность структуры C_{sh} .

По [19] ρ C₆₀ оценивается в 2.03 g/cm³. Следуя фуллереноподобной модели C_{sh}, внутриглобулярная пористость должна находиться в пределах 30–35%, а суммарная пористость — около 40%. Противоречие с приведенной выше величиной 10–12% устраняется, если допустить присутствие С-фазы сажевого типа или/и C_n в меж- и внутриглобулярном пространстве, а также интеркалирование основной массы ГПП [8]. Последнее, как и фуллереноподобие, следует из совпадения основных спектральных особенностей для *sh*-1 и димеров C₆₀ в оболочке KCl [20] в области 400–1500 cm⁻¹ (см. рис. 2, кривые 2, 3). В спектре *sh*-1 присутствует рамановская полоса 1575–1580 cm⁻¹ графита, разрешение которой также связывается с интеркалированием одновалентными электронно-донорными атомами [23].

Сопоставление ГПП со стенками глобул не объясняет нечетного числа слоев в пакетах до и их четное число после термообработки Фрактальность структуры С_{sh} предполагает смешанный тип sh [3]. взаимодействия между пакетами и отсутствие выраженной их ориентации. Подтверждением стеклообразной структуры C_{sh} можно считать совпадение величин ρ для *sh*-1 и углеродного расплава (1.9 g/cm³), состоящего из цепочечных и ароматических С-кластеров [24]. В этой связи глобулярность можно рассматривать как результат упорядоченного перераспределения массы в замкнутом объеме, начинающегося с зарождения графитоподобных сеток в поле равномерно распределенных каталитически активных центров. Уменьшение числа центров кристаллизации отвечает увеличению размеров пакетов и, как следствие, размеров С-глобул. В такой модели нечетность слоев в пакете следствие зарождения первичного монослоя, что не исключает возможности зарождения двух слоев и их четного числа в пакете. Тем самым ГПП правомерно рассматривать как элемент самоподобия во

фрактальной структуре С_{sh}. Если допустить осадочное накопление С-глобул, то величина фрактальной размерности должна находиться в пределах 2.3–2.5 D [25]. Межглобулярная пористость такой структуры не менее 20%. По нашему мнению, именно величина суммарной пористости C_{sh} является основным аргументом в пользу рекристаллизационного механизма. Подтверждением кристаллизационной модели формирования C_{sh} может служить нитевидная структура в отдельных образцах sh [26]. В рамках механизма пар-жидкость-кристалл [27] рост нитей начинается из квазижидкостной фазы, которая подпитывается подвижными С-кластерами, и становится возможным образование фуллереноподобных структур [28]. Для роста нитевидных кристаллов необходим свободный объем и небольшое количество затравочных центров кристаллизации. Рекристаллизационный процесс может не затронуть части С-кластеров. Тем самым основным отличием формирования ГПП в sh является замкнутость пространства, а образование свободных объемов создает условия для вторичной рекристаллизации слабосвязанных С-кластеров в ароматические структуры.

Получение величин ρ СТУ и sh-1 из одинаковых моделей ГПП означает, что декремент между расчетным и известным значением ρ sh-1 (0.03-0.07%) связан с наличием С-фазы ρ 1.6-1.66 g/cm³, характерной для СТУ после высокотемпературной обработки [5], или фуллеренов. Использование макрофизической величины для оценки суммарной плотности статистически распределенных молекул С_n или их малоразмерных агрегатов правомерно вследствие заведомо меньшего межпорового пространства в C_{sh} в сравнении с межмолекулярным объемом в фуллерите, а также адсорбированным состоянием С_n. Известные представления об образовании шунгитового вещества [3], присутствие в нем органических соединений, микроорганизмов и воды противоречит термическому механизму формирования фазы малой плотности. Из вышеизложенного следует, что оценочная конентрация C_n в *sh* с наиболее разупорядоченной структурой составляет 3-5% от массы С_{sh}. Подтверждением этой оценки можно считать разрешение полосы 1180 cm^{-1} в спектре *sh*-1 (см. рис. 2, кривая 2), которая является характеристической в спектрах C_{60} . Аналогичная полоса наблюдается в спектре твердой аморфизированной фазы С₆₀ — метилпирролидон (см. рис. 2, кривая 4). В отличие от спектра C₆₀ — КСІ [29], в спектрах C₆₀ — метилпирролидон и sh-1 отсутствует характеристическая полоса $1420-1430 \text{ cm}^{-1}$, что наиболее вероятно связано с взаимодействием *π*-состояний основной массы C_n с компонентами матрицы. Общие особенности в ИК-спектрах sh-1, СТУ,

С₆₀ — КСl_x и ультрадисперсных частиц графита [30] отвечают наличию одинаковой структурной группы С-атомов в виде взаимодействующих изогнутых гексагональных слоев [31].

Согласно полученной оценке, на одну глобулу приходится 30-40 молекул С_n, что допускает их ассоциативное расположение в свободном пространстве С_{sh}. Это предположение согласуется с возможностью регистрации калориметрических эффектов в температурных областях (190-200, 235-245 и 280 К). Для образцов sh-3, обезвоженных вакуумированием в течение 24 h при 280 K, высокотемпературный максимум лежит на $5-7^{\circ}$ ниже, а низкотемпературный на $5-7^{\circ}$ выше, чем в Высокотемпературные максимумы обычно регистрируются в *sh*-1. первых записях при нагревании образца. Перечисленные особенности позволяют связывать калориметрические максимумы с процессами в упорядоченных агрегатах с различной относительной концентрацией С₆₀ и С70. Низкотемпературные максимумы относят к изменениям колебательной подвижности молекул C₆₀ и C₇₀, а высокотемпературные к структурным изменениям в фуллеритах С₆₀ с высоким содержанием примеси С₇₀ [32].

Расчетная оценка C_n в *sh* подтверждается результатами экстракции, из термоактивированных частиц *sh*-1, полярными растворителями, способными образовывать с C_n соединения с донорно-акцепторным типом связи. При термическом удалении углеводородов и растворителя из выделенной битумозной фазы наблюдается кристаллизация углеродных частиц с кубическим или дендритным габитусом. Рентгенометрически частицы идентифицируются как C_{60-70} . Спектральные особенности экстрагированных С-частиц и их растворов также соответствуют C_{60-70} . В зависимости от условий экстрагирования масса выделенных кристаллических частиц оценивается в пределах 1.5-2.0% от массы *sh*-1. Полученные данные определенно свидетельствуют о возможной технологической рентабельности использования в медико-экологических целях природных фуллеренов из шунгитов.

Список литературы

- [1] Buseck P.R., Tsipurski S.J., Hettich R. // Science. 1992. V. 257. P. 215-217.
- [2] Холодкевич С.В., Бехренев А.В., Донченко В.К. и др. // ДАН. 1993. Т. 330. № 3. С. 340-341.
- [3] Филиппов М.М., Голубев А.И., Медведев П.В. и др. Органическое вещество шунгитоносных пород Карелии. Петрозаводск, 1994. 208 с.

- [4] Юшкин Н.П. // ДАН. 1994. Т. 337. № 6. С. 800-803.
- [5] Шунгиты Карелии и пути их комплексного использования / Под ред. В.А. Соколова и Ю.К. Калинина. Петрозаводск, 1976. 240 с.
- [6] Резников В.А., Полеховский Ю.С., Холмогоров В.Е. // Углеродистые формации в геологической истории. Тез. докл., Петрозаводск, 1998. С. 71– 72.
- [7] Калинин Ю.К. // ЗВМО. 1990. Ч. 119. В. 5. С. 1-8.
- [8] Холодкевич С.В., Побочий В.В. // Письма в ЖТФ. 1994. Т. 20. С. 22-25.
- [9] Козырев С.В., Роткин В.В. // ФТП. 1993. Т. 27. В. 9. С. 1409–1434.
- [10] Свойства неорганических соединений / Под ред. А.И. Ефимова. Л.: Химия, 1983. 390 с.
- [11] Белоусов В.П., Будтов В.П., Данилов О.Б. и др. // Оптич. журн. 1997. Т. 64. № 12. С. 3–37.
- [12] Волл В.А. // ФТП. 1995. Т. 29. В. 10. С. 2071-2077.
- [13] Елецкий А.В., Смирнов Б.М. // УФН. 1995. Т. 165. № 9. С. 977–1009.
- [14] Чистяков А.Л., Станкевич И.В. Изв. РАН (хим.). 1995. № 9. С. 1680–1683.
- [15] Афросимов В.В., Басалаев А.А., Панов М.Н. // ЖТФ. 1996. Т. 66. Вып. 5. С. 10–20.
- [16] Петров Ю.И. Физика малых частиц. М.: Наука, 1982. 359 с.
- [17] Резников В.А., Струц А.В. // Опт. и спектр. 1992. Т. 73. В. 2. С. 355-363.
- [18] Ключник А.В., Лозовик Ю.Е., Солодов А.В. // ЖТФ. 1995. Т. 65. В. 6. С. 203–206.
- [19] Шульга Ю.М., Лобач А.С. // ФТТ. 1993. Т. 35. № 4. С. 1092–1094.
- [20] Резников В.А., Суханов А.А. // Письма в ЖТФ. 1999. Т. 25. В. 8. С. 45-49.
- [21] Сидоров Л.Н., Болталина О.В. // Сорос. Обр. ж. 1997. № 11. С. 35-39.
- [22] Ковалевский В.В. // Ж. неорг. хим. 1994. Т. 39. № 1. С. 31-35.
- [23] Иванов-Омский В.И., Андреев А.А., Фролова Г.С. // ФТП. 1999. Т. 33. В. 5. С. 608–612.
- [24] Полухин В.А., Кибанова Е.А. // ЖФХ. 1999. Т. 73. № 3. С. 494–499.
- [25] Фредер Е. Фракталы. М.: Мир, 1991. 260 с.
- [26] Kovalevski V.V., Saphronov A.N., Markovski Ju.A. // Mol. Mat. 1996. V. 8. P. 21–24.
- [27] Гиваргизов Е.И. Рост нитевидных и пластинчатых кристаллов из пара. М.; 1977. 303 с.
- [28] Резников В.А., Кехва Т.Э., Плаченов Б.Т. // Письма в ЖТФ. 1990. Т. 16. В. 22. С. 1–4.
- [29] Суханов А.А., Резников В.А. // Письма в ЖТФ. 1999. Т. 25. В. 9. С. 56-62.
- [30] Полеховский Ю.С., Резников В.А. // Образование и локализация руд в Земной коре. СПбГУ, 1999. С. 123–147.
- [31] Локтев В.М. // Физ. низких темп. 1992. Т. 18. № 3. С. 217-237.
- [32] Kniaz K., Fisher J.E., Girifallo L.A. et al. // Fullerene alloy. 1995. Sol. St. Com. V. 96. P. 739–743.