Перераспределение атомов дейтерия в соединениях HfV₂D_x

© И.Г. Ратишвили, Н.З. Наморадзе*

Институт физики Академии наук Грузии, 380077 Тбилиси, Грузия E-mail: rati@physics.iberiapac.ge * Институт кибернетики Академии наук Грузии,

380086 Тбилиси, Грузия E-mail: namor@cybern.acnet.ge

(Поступила в Редакцию 27 января 2000 г. В окончательной редакции 16 июня 2000 г.)

> Рассматривается раствор водорода в интерметаллическом соединении AB₂ со структурой *C*-15. Исследуется процесс упорядочения атомов водорода, заключающийся в формировании их неравного распределения по подрешеткам междоузельных позиций A₂B₂. На основе качественного анализа и численных расчетов показано, что в соединениях типа HfV₂D_x развитие процесса перераспределения внедренных атомов и само их основное низкотемпературное состояние порядка могут оказаться различными в зависимости от содержания водорода в растворе и от величины энергетического параметра системы $p \equiv V_2/V_1$.

Работа выполнена в рамках тематического плана Академии наук Грузии.

В интерметаллических соединениях AB₂ со структурой C-15 (ZrTi₂, HfV₂, TaV₂, YFe₂ и т.д.) внедренные водородные (дейтериевые) атомы распределяются по междоузлиям типа AB₃ и A₂B₂ [1–4]. Первые называют междоузлиями *е*-типа (32 междоузлия на элементаруню ячейку), а вторые — междоузлиями *g*-типа (96 междоузлий на элементарную ячейку). Совокупность *е*-междоузлий разбивается на 8 ГЦК подрешеток, а совокупность *g*-междоузлия [1], тогда как в TaV₂D_x (1.3 < x < 1.6) они сконцентрированы в *g*-междоузлиях [3]. В YFe₂D_x (1.3 < x < 2.9) дейтерий находится в междоузлиях обоих типов [4].

Об исследуемой нами системе HfV2Dx известно следующее [2]. Металлическая матрица HfV₂ со структурой C-15 при T > 120 К кубична, а ниже этой температуры испытывает искажения. При комнатных температурах и давлении Н2 в десятки атмосфер металлическая решетка поглощает водород до состава HfV₂H_{4.5}. Boдород (дейтерий) начинает выходить из образца лишь при T > 400 К. Основная масса D-атомов находится в междоузлиях д-типа, и лишь их определенная доля занимает е-позиции [2]. С понижением температуры все *D*-атомы скапливаются в *g*-междоузлиях [2]. (Внедренные в решетку Н- и D-атомы распределяются практически идентично и в дальнейшем мы не будем учитывать их изотопического различия). При составе HfV₂H₄ водород в низкотемпературной области распределен по *д*-междоузлиям неравновероятно, скапливаясь преимущественно в нескольких д-подрешетках, что вызывает соответствующее искажение матрицы [2]. Этот процесс назван ориентационным упорядочением водорода [5]. Формирование сверхструктуры в отдельной подрешетке не отмечается вплоть до гелиевых температур [2].

В следующем ниже рассмотрении будем предполагать, что в анализируемом температурном интервале состав

соединения $HfV_2H(D)_x$ неизменен и что водород распределен лишь по междоузлиям *g*-типа.

Основываясь на модели статических концентрационных волн для нескольких подрешеток [6], авторы [5] перечислили все возможные неравновероятные распределения внедренных атомов между 24 подрешетками и выделено то единственное распределение, которое в соединении HfV_2D_4 соответствует стехиометрическому составу твердого раствора и позволяет удовлетворить требованиям эффекта блокировки в водород-водородном взаимодействии, ограничивающего то минимальное расстояние, на котором в этом соединении могут располагаться внедренные H-атомы. Соответствующая функция распределения оказалась содержащей два параметра дальнего порядка.

Цель настоящего исследования — описание развития процесса упорядочения в системе $HfV_2H(D)_x$ с помощью функции распределения водорода по *g*-подрешеткам, предложенной в [5] для соединения HfV_2D_4 .

1. Математическая формулировка задачи

В условиях неравновероятного распределения атомов внедрения по подрешеткам и отсутствия сверхструктуры в каждой из них формирующаяся структура может быть охарактеризована набором концентраций водорода в каждой из подрешеток n(z) (z = 1, 2, ... 24). В [5] была введена определенная нумерация *g*-подрешеток и для системы HfV₂D₄ предложена следующая функция распределения:

$$n(z) = [c\mathbf{w}_1 + \eta_1\gamma_1(\mathbf{w}_2 - 2\mathbf{w}_3) + \eta_2\gamma_2\mathbf{w}_4]_z.$$
(1)

Здесь n(z) определяется как отношение (N_z/N) , где N_z — число атомов внедрения в *z*-подрешетке с *N* узлами;

 w_i — векторы в 24-мерном пространстве совокупности ГЦК подрешеток [5]

$$\begin{split} \mathbf{w}_1 &= \{11111111111111111111111\}, \\ \mathbf{w}_2 &= \{1111\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}00001111\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}0000\}, \\ \mathbf{w}_3 &= \{11110000\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}11110000\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}\}, \\ \mathbf{w}_4 &= \{11\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}11000011\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}110000\}, \end{split}$$

символ $[\ldots]_z$ означает *z*-компоненту вектора, η_1 и η_2 — параметры порядка, описывающие степень упорядочения, γ_1 и γ_2 — нормирующие множители, а *c* — средняя концентрация водорода в одной подрешетке,

$$c = \Sigma_z n(z)/24. \tag{3}$$

(Соединению AB_2H_4 отвечает значение c = 1/3).

Функция (1) не зависит от координат узлов в подрешетке и является лишь функцией температуры (благодаря температурной зависимости параметров порядка). Эта функция для различных *z* принимает следующие три значения:

$$n_1 = c + \eta_1 \gamma_1 + \eta_2 \gamma_2$$
 (z = 1, 2, 7, 8, 13, 14, 19, 20), (4a)

 $n_2 = c + \eta_1 \gamma_1 - \eta_2 \gamma_2$ (z = 3, 4, 5, 6, 15, 16, 17, 18), (4b)

$$n_3 = c - 2\eta_1\gamma_1$$
 (z = 9, 10, 11, 12, 21, 22, 23, 24). (4c)

Значениям $[\eta_1 = 1, \eta_2 = 1]$ отвечает состояние полного порядка типа $[n_1 = 1, n_2 = 0, n_3 = 0]$, достигаемое при

$$c = 1/3, \quad \gamma_1 = 1/6, \quad \gamma_2 = 1/2.$$
 (5)

Далее будет видно, что при этих же значениях c, γ_1 и γ_2 полный порядок может описываться также набором чисел заселения $[n_1 = 0, n_2 = 0, n_3 = 1]$, отвечающим значениям параметров порядка $[\eta_1 = -2, \eta_2 = 0]$. (Полному беспорядку, $n_1 = n_2 = n_3 = c$, соответствуют значения $[\eta_1 = 0, \eta_2 = 0]$).

Если $c \neq 1/3$, то тогда с понижением температуры достигается лишь состояние максимального порядка, когда хотя бы одно из чисел заселения n_i не равно 0 или 1.

Наша цель — определить температурные зависимости равновесных значений параметров порядка, $\eta_1(T)$ и $\eta_2(T)$, и чисел заселения подрешеток, $n_1(T)$, $n_2(T)$ и $n_3(T)$. Обычно $\eta_1(T)$ и $\eta_2(T)$ определяются как координаты абсолютного минимума свободной энергии $F(\eta_1, \eta_2; c, T)$. Таким образом, задача сводится к определению функции свободной энергии водородной подсистемы и нахождению ее экстремумов.

2. Решение задачи

2.1. Функция сободной энергии упорядочивающейся подсистемы. Исходя из определения энтропии $S = k_8 \ln W$, где W число микросостояний, отвечающих данному макросостоянию (в нашем случае — данному числу внедренных атомов), и учитывая разбиение g-позиций на Z_0 подрешеток, получаем следующее выражение для энтропии подсистемы H-атомов:

$$S(H) = k_B \Sigma_z \ln \{ N! / [N_z! (N - N_z)!] \}$$

(z = 1, 2, ..., Z₀), (6)

где $N_z = Nn(z)$. Учитывая, что n(z) может принимать только три различных значения (3) и что количество подрешеток, где $n(z) = n_1, n_2$ и n_3 , одно и то же и равно $\nu = Z_0/3$, получим

$$S(H) = -(NZ_0k_B/3)\Sigma_j [n_j \ln n_j + (1 - n_j)\ln(1 - n_j)]$$

(j = 1, 2, 3). (7)

Энергия взаимодействия внедренных атомов между собой может быть представлена в виде

$$E(H) = (1/2)\Sigma_{\mathbf{r},\mathbf{r}'}V(\mathbf{r} - \mathbf{r}')n(\mathbf{r})n(\mathbf{r}'), \qquad (8)$$

где $V(\mathbf{r} - \mathbf{r}')$ — потенциал H–H-взаимодействия, $n(\mathbf{r})$ — обозначает вероятность нахождения H-атома в междоузлии с радиус-вектором **r**; **r** и **r**' пробегают по всем междоузлиям A₂B₂-типа.

Учитывая, что **r** можно представить в виде **r** = **R** + **h**_{*p*}, где **R** пробегает по всем узлам одной ГЦК подрешетки А-атомов, а вектор **h**_{*p*} нумерует все 24 междоузлия A_2B_2 -типа, окружающие данный А-атом, и что в каждой из этих 24 подрешеток сверхструктура не формируется, можно написать $V(\mathbf{r} - \mathbf{r}') = V_{z,z'}(\mathbf{R} - \mathbf{R}')$ и сумму (8) представить в виде

$$E(H) = (N/2)\Sigma_{z,z'}V_{z,z'}(0)n(z)n(z'),$$
(9)

где

$$V_{z,z'}(0) \equiv (1/N) \Sigma_{\mathbf{R},\mathbf{R}'} V_{z,z'}(\mathbf{R} - \mathbf{R}'), \qquad (10)$$

а n(z) и n(z') даются выражением (1).

Подставляя (1) в (9), можно показать, что это выражение сводится к следующему:

$$E(\eta_1, \eta_2) = (Nk_B/2) \left\{ V_0 c^2 + V_1 (\eta_1 \gamma_1)^2 + V_2 (\eta_2 \gamma_2)^2 \right\},$$
(11)

где V_0 , V_1 и V_2 — энергетические константы (в кельвинах)

$$V_{0} \equiv (24/k_{B})[v_{1} + 2v_{2} + 2v_{3} + 4v_{4}],$$

$$V_{1} \equiv (24/k_{B})[2(v_{1} - v_{2}) + 4(v_{3} - v_{4})],$$

$$V_{2} \equiv (16/k_{B})[v_{1} - v_{2} + 2(v_{3} - v_{5})].$$
 (12)

Здесь *v*₁,..., *v*₅ — линейные комбинации Фурье-компонент потенциала Н–Н-взаимодействия

$$v_{1} \equiv V_{1.1}(0) + V_{1.3}(0) + V_{1.14}(0) + V_{1.16}(0),$$

$$v_{2} \equiv V_{1.5}(0) + V_{1.6}(0) + V_{1.17}(0) + V_{1.18}(0),$$

$$v_{3} \equiv V_{1.2}(0) + V_{1.13}(0),$$

$$v_4 \equiv V_{1.7}(0) + V_{1.19}(0), \quad v_5 \equiv V_{1.3}(0) + V_{1.16}(0), \quad (13)$$

где слагаемые $V_{z,z'}(0)$ определяются формулой (10).

Таким образом, свободная энергия, F(H) = E(H) - TS(H), всех H-атомов, находящихся в Z_0 междоузельных подрешетках, представляется выражением

$$F(\eta_1, \eta_2; c, T) = Nk_B\{(1/2)[V_0c^2 + V_1(\eta_1\gamma_1)^2 + V_2(\eta_2\gamma_2)^2] + T(Z_0/3)\Sigma_{j=1,2,3}[n_j \ln n_j + (1 - n_j)\ln(1 - n_j)]\},$$
(14)

где числа заселения подрешеток n_j (j = 1, 2, 3) определяются формулами (4). Полное число H-атомов, находящихся во всех подрешетках, $N_{\rm H} = \Sigma_z N_z$, считается неизменным.

2.2. Экстремумы функции свободной энергии. Как известно, координаты экстремумов функции $F(\eta_1, \eta_2; c, T)$ на плоскости (η_1, η_2) должны удовлетворять уравнениям

$$\partial F/\partial \eta_1 = 0, \quad \partial F/\partial \eta_2 = 0,$$
 (15)

которые в случае функции (14) принимают следующий вид:

$$\ln\{n_1n_2(1-n_3)^2/[(1-n_1)(1-n_2)n_3^2]\} = -V_1\eta_1\gamma_1/8T,$$
(16a)
$$\ln\{n_1(1-n_2)/[(1-n_1)n_2]\} = -V_2\eta_2\gamma_2/8T,$$
(16b)

Тип экстремума определяется детерминантом $\Delta(\eta_1, \eta_2; c, T)$

$$\Delta(\eta_1, \eta_2; c, T) = (\partial^2 F / \partial \eta_1^2) (\partial^2 F / \partial \eta_2^2) - (\partial^2 F / \partial \eta_1 \partial \eta_2)^2.$$
(17)

В случае функции (14) имеем

(

$$(\partial^2 F / \partial \eta_1^2) = N k_B \gamma_1^2 \{ V_1 + 8T [(n_1(1-n_1))^{-1} + (n_2(1-n_2))^{-1} + 4(n_3(1-n_1))^{-1}] \}, \quad (18a)$$

$$(\partial^2 F / \partial \eta_2^2) = Nk_B \gamma_2^2 \{ V_2 + 8T [(n_1(1 - n_1))^{-1} + (n_2(1 - n_2))] \}^{-1},$$
(18b)

$$\partial^{2} F / \partial \eta_{1} \partial \eta_{2} = 8Nk_{B}T \gamma_{1} \gamma_{2} [(n_{1}(1-n_{1}))^{-1} - (n_{2}(1-n_{2}))^{-1}].$$
(18c)

Минимуму соответствует $\Delta(\eta_1, \eta_2) > 0$, $(\partial^2 F / \partial \eta_1^2) > 0$, максимуму — $\Delta(\eta_1, \eta_2) > 0$, $(\partial^2 F / \partial \eta_1^2) < 0$, а седловой точке — $\Delta(\eta_1, \eta_2) < 0$.

2.3. Область определения функции свободной энергии. Функция (14) определена в той области P' плоскости (η_1, η_2), где числа заполнения узлов подрешеток (n_1, n_2, n_3) одновременно удовлетворяют условиям

$$0 \le n_j \le 1$$
 $(j = 1, 2, 3).$ (19)

Форма области *P*′ зависит от концентрации раствора *c*, но в любом случае она симметрична относительно оси

Рис. 1. Области определения функции свободной энергии P'. c = 0.25 и 0.375.

 η_1 , поскольку функция (14) инвариантна при замене η_2 на — η_2 (когда $n_1 \to n_2, n_2 \to n_1$). Это означает, что если равновесно состояние { $\eta_1(T), \eta_2(T)$ }, то равновесным будет также и состояние { $\eta_1(T), -\eta_2(T)$ }. Поэтому область определения P' может быть рассмотрена как две "полуобласти" P, находящиеся в полуплоскостях $\eta_2 > 0$ и $\eta_2 < 0$ (рис. 1).

Ранее нами было показано [7,8], что в пределах области P' процесс упорядочения, начинающийся при $T = T_{tr}$ в точке $O(\eta_1, \eta_2 = 0)$ и оканчивающийся при T = 0 К в одной из угловых точек f, b или d (или в аналогичных им точках f', b', d'), описывается последовательностью равновесных состояний, находящихся в пределах одной полуплоскости. Поэтому в дальнейшем ограничимся анализом экстремумов свободной энергии, находящихся в пределах одной из "полуобластей" P, где $\eta_2 \ge 0$.

2.4. Аналитическое рассмотрение экстремумов F-функции. Ясно, что вдоль оси η_1 , где $n_1 = n_2 = c + \eta_1 \gamma_1 \equiv n_0$, уравнение (16b) оказывается удовлетворенным во всех точках, а каждому значению η_1 можно сопоставить температуру $T_1(\eta_1)$

$$T_1(\eta_1) = -(V_1\gamma_1/8)\eta_1/[2\ln\{n_0(1-n_3)/[(1-n_0)n_3]\}],$$
(20)

при которой уравнение (16а) также удовлетворяется. Тип этого экстремума определяется детерминантом (17),

С	i		$\eta_1(i)$	$\eta_2(i)$	arepsilon(i)
< 1/3	g	$egin{array}{l} n_2=0\ \eta_2=0 \end{array}$	$-c\gamma_1$	0	V_1c^2
	d	$n_2 = 0$ $n_3 = 0$	$c/2\gamma_1$	$3c/2\gamma_2$	$c^2/4(V_1+9V_2)$
> 1/3	f	$n_3 = 1$ $n_2 = 0$	$-[(1-c)/2\gamma_1]$	$(3c-1)/2\gamma_2$	$[V_1(1-c)^2 + V_2(3c-1)^2]/4$
	b	$n_1 = 1$ $n_2 = 0$	$(0.5-c)/\gamma_1$	1	$V_1(0.5-c)^2 + V_2\gamma_2^2$
	d	$n_1 = 1 \\ n_3 = 0$	$c/2\gamma_1$	$(2-3c)/2\gamma_2$	$[V_1c^2 + V_2(2-3c)^2]/4$

Таблица 1. Характеристика угловых точек области Р, где определена функция свободной энергии (14) при с < 1/3 и с > 1/3

Примечание. Даны условия, определяющие угловые точки, координаты угловых точек и относительные значения энергии в этих точках.

принимающим в этом частном случае следующий вид [8]:

$$\Delta(\eta_1, 0; c, T) = (Nk_B)^2 \gamma_1^2 \gamma_2^2 V_1 V_2 (1 - [T_1(\eta_1) / \tau_1(\eta_1)]) \\ \times (1 - [T_1(\eta_1) / \tau_2(\eta_1)]).$$
(21)

Здесь введены температурные параметры $au_1(\eta_1)$ и $au_2(\eta_1)$

$$\begin{aligned} \tau_1(\eta_1) &\equiv -(V_1/16) \{ [n_0(1-n_0)]^{-1} + 2[n_3(1-n_3)]^{-1} \}^{-1}, \\ (22a) \\ \tau_2(\eta_1) &\equiv -(V_2/16)[n_0(1-n_0)]. \end{aligned}$$

Отметим, что стабильность упорядоченного состояния подразумевает отрицательность V_1 и V_2 . Тогда из (21) и (22) очевидно, что экстремум на оси η_1 будет минимумом, если $T_1(\eta_1) > \tau_1(\eta_1)$, $\tau_2(\eta_1)$; максимумом, если $T_1(\eta_1) < \tau_1(\eta_1)$, $\tau_2(\eta_1)$; и седловой точкой, если $T_1(\eta_1)$ окажется между $\tau_1(\eta_1)$ и $\tau_2(\eta_1)$.

Рассмотрим прямую $\eta_2 = \eta_1$. Вдоль нее $n_2(\eta_1, \eta_2) = n_3(\eta_1)$. В этом случае при дополнительном условии $V_2 = V_1 \equiv V$, уравнения (16а) и (16b) совпадают и удовлетворяются при соответствующей температуре $T_2(\eta_1)$

$$T_2(\eta_1) = -(V/8)\eta_1 / \left[2\ln\{n_1(1-n_3)/[(1-n_1)n_3]\} \right].$$
(23)

Аналогичным образом убеждаемся, что на прямой $\eta_2 = -\eta_1$, где $n_1(\eta_1, \eta_2) = n_3(\eta_1)$, при дополнительном условии $V_2 = V_1 \equiv V$ система уравнений (16а) и (16b) удовлетворяется при температурах, определяемых как

$$T_3(\eta_1) = -(V/8)\eta_1 \Big[2\ln\{n_2(1-n_3)/[(1-n_2)n_3]\} \Big].$$
(24)

Во всех остальных случаях для определения местонахождения экстремумов функции (14) требуется численное решение системы уравнений (16).

Как отмечалось выше, упорядоченное состояние системы при T = 0 К описывается координатами одной из угловых точек области *P*. В случае концентраций

 $c \leq 1/3$ это точки *g* и *d* (рис. 1, *a*), а в случае 1/3 < c < 2/3 — точки *f*, *b* и *d* (рис. 1, *b*). В табл. 1 приводятся координаты этих экстремальных точек, $\eta_1(i)$ и $\eta_2(i)$, и отвечающие им относительные значения внутренней энергии $\varepsilon(i) \equiv [E(i)/2Nk_B - V_0c^2]$, где E(i) определяется выражением (11).

Рассмотрим разности $\delta \varepsilon_{i,i'} \equiv \varepsilon(i) - \varepsilon(i')$. Из табл. 1 следует, что при c < 1/3, когда имеются угловые точки g и d, имеем

$$\delta \varepsilon_{d,a} = [3c^2/4]|V_1|(1-3p),$$
 (25a)

а при c > 1/3 (угловые точки f, b и d) имеем выражения

$$\delta \varepsilon_{d,f} = [(1-2c)/4]|V_1|[1-3p],$$
 (25b)

$$\delta \varepsilon_{d,b} = [(1 - 4c + 3c^2)/4] |V_1| [1 - 3p], \qquad (25c)$$

$$\delta \varepsilon_{b,f} = (3c/4)[(2/3) - c]|V_1|[1 - 3p].$$
(25d)

В формулах (25а)–(25d) введен энергетический параметр

$$V_2/V_1 \equiv p, \tag{26}$$

характеризующий данную упорядочивающуюся систему.

Из (25) следует, что $p = 1/3 \equiv p_0$ является критическим значением: при малых концентрациях (c < 0.5) и низких температурах ($T \approx 0$ K) в случае $p < p_0$ абсолютный минимум свободной энергии находится в угловых точках g и f, а в случае $p > p_0$ он будет находиться или в точке d при $c < c_0$, или в точке b при $c > c_0$, где c_0 , определяемое из условия

$$1 - 4c + 3c^2 = 0 \tag{27}$$

(см. (25с)), оказывается равным $c_0 = 1/3$.

Отсюда, в частности, заключаем, что если система HfV₂D_x характеризуется энергетическим параметром p > 1/3, то для $x \le 4$ ($c \le 1/3$) равновесным при T = 0 K будет *d*-состояние [$\eta_1 = \eta_2 = 3c$], описывающее распределение водорода типа { $n_1 = 3c, n_2 = n_3 = 0$ }, а при 4 < x < 6 (1/3 < c < 1/2) — *b*-состояние

Рис. 2. Процесс перераспределения H-атомов по подрешеткам междоузельных позиций. Случай 24 подрешеток. Упорядоченное состояние H-атомов описывается функцией распределения (1) и функцией свободной энергии (14). c = 1/3, p = 0.25. a — траектории экстремумов на плоскости (η_1 , η_2). Жирная и тонкая линии — траектории абсолютного и локального минимумов соответственно; последовательность крестиков и треугольников — отрезки траектории представлены на рис. 2, a; c — температурное изменение равновесных чисел заселения узлов в различных подрешетках n_1 , n_2 и n_3 ; d — значения свободной энергии, соответствующие левому (f_L) и правому (f_R) локальным минимумам и неупорядоченному состоянию системы (f_0).

 $[\eta_1 = 3(1-2c), \eta_2 = 1]$, описывающее распределение типа $\{n_1 = 1, n_2 = 0, n_3 = 3c - 1\}$. Если же в этой системе p < 1/3, то тогда при $x \le 4$ равновесным окажется *g*-состояние, $[\eta_1 = 3(c - 1), \eta_2 = 0]$, с распределением типа $\{n_1 = 0, n_2 = 0, n_3 = 3c\}$, а при 4 < x < 6 - f-состояние, $[\eta_1 = 3(c - 1), \eta_2 = 3c - 1]$, с распределением типа $\{n_1 = 3c - 1, n_2 = 0, n_3 = 1\}$.

2.5. Численное решение уравнений для экстремумов функции свободной энергии. Система уравнений (16а)–(16b) решалась при помощи численных методов, аналогичных использованным в [9]. Последовательность значений $\eta_1(T)$ и $\eta_2(T)$ определялась при заданных значениях параметров упорядочивающейся системы c, p и V₁. Далее, на рис. 2-4 представлены результаты расчетов, проведенных для значений $c = 1/3, V_1 = -25920 \text{ K}, p = 0.25, 0.335 \text{ и} 0.4.$ (Значение V1 определено из условия существования фазового превращения порядок-беспорядок в соединении HfV₂D₄ при $T_{\rm tr} \approx 120 \, {\rm K}$ [2]). Рисунки иллюстрируют поведение соединений с одной и той же концентрацией, отличающихся значением энергетического параметра р. Приведены примеры систем с p < 1/3 (рис. 2), p > 1/3(рис. 3) и $p \approx 1/3$ (рис. 4). В каждом случае для довательность местоположений экстремумов F-функции на плоскости (η_1, η_2) (рис. 2, *a*, 3, *a*, 4, *a*), температурные зависимости координат экстремумов $\eta_1(T), \eta_2(T)$ (рис. 2, b, 3, b, 4, b), чисел заселения подрешеток $n_1(T)$, $n_2(T)$ и $n_3(T)$ (рис. 2, c, 3, c, 4, c) и значения свободной энергии, связанные с двумя локальными минимумами и с неупорядоченным состоянием (рис. 2, d). На рисунках с изображением траекторий экстремумов (рис. 2, *a*-4, *a*) и температурных зависимостей координат экстремумов (рис. 2, b-4, b) жирные линии соответствуют абсолютному минимуму, тонкие линии — локальному минимуму, последовательность крестиков — седловой точке, а последовательность треугольников — максимуму. На рисунках с изображением чисел заселения подрешеток (рис. 2, c-4, c) представлены значения $n_i(T)$, отвечающие лишь абсолютному минимуму функции свободной энергии. Жирными и тонкими линиями здесь отмечены концентрации внедренных атомов в заселяемых и в освобождающихся от Н-атомов подрешетках соответственно. Наконец, на рисунке с изображением свободной энергии (рис. 2, d) представлены значения величины $f(\eta_1, \eta_2; c, T) \equiv \{F(\eta_1, \eta_2; c, T)/Nk_B - V_0c^2\},\$

интервала температур $T_{\rm tr} \ge T > 0$ определялись: после-

Рис. 3. То же, что и на рис. 2, a-c. c = 1/3, p = 0.4.

отвечающей неупорядоченному состоянию f_0 , а также вычислнной вдоль траекторий левого (L) и правого (R)локальных минимумов. Очевидно, что из этих двух последних экстремумов абсолютным минимумом является тот, которому отвечает меньшее значение свободной энергии. При p < 1/3 имеем $f_0 \ge f_R \ge f_L$ (рис. 2, d), а при p > 1/3 и $p \approx 1/3$ получаем аналогичные зависимости, но в первом случае $f_0 \ge f_L \ge f_R$, а во втором — $f_0 \ge f_R \approx f_L$.

3. Краткое обсуждение результатов и заключение

На приведенных выше рисунках представлено поведение системы, описываемой функциями распределения (1) и свободной энергии (14). Как видим, упорядочение, считающееся равновесным в системе HfV₂D₄,

Рис. 4. То же, что и на рис. 2, a-c. c = 1/3, p = 0.335.

т.е. $\{n_1 \approx 1, n_2 \approx 0, n_3 \approx 0\}$ [2,5], будет таковым, если только энергетический параметр системы p > 1/3. В случае же другой системы, где p < 1/3, развитие процесса пойдет по иному сценарию, отвечающему нахождению абсолютного минимума в левом локальном минимуме, и окончится формированием упорядочения типа $\{n_3 \approx 1, n_1 \approx 0, n_2 \approx 0\}$.

Необходимо отметить, что в металлической матрице с кубической симметрией оба распределения $\{n_1 \approx 1, n_2 \approx 0, n_3 \approx 0\}$ и $\{n_3 \approx 1, n_1 \approx 0, n_2 \approx 0\}$ идентичны с физической точки зрения. Различие между ними будет иметь место только в том случае, если в кристалле имеется выделенное направление, обусловленное другой подсистемой (скажем, подсистемой магнитных атомов). В то же время нужно подчеркнуть, что само развитие процесса упорядочения в системах с p < 1/3 и p > 1/3 несколько различно: в первом случае ниже перехода порядок–беспорядок при $T < T_{\rm tr}$ формируется

распределение типа $\{n_3 > n_1 = n_2\}$ при любых значениях p < 1/3; во втором же случае при $T < T_{tr}$ формируется распределение $\{n_1 > n_2 > n_3\}$, причем $(n_2 - n_3)$ тем больше, чем больше разность (p - 1/3).

Что касается рода фазового перехода порядокбеспорядок, то он оказался переходом первого рода при p = 0.25 и 0.335 и переходом второго рода при p = 0.4.

В заключение отметим, что все перечисленные результаты получены в рамках предположения о термодинамической независимости подсистемы внедренных атомов без учета их влияния на другие подсистемы, скажем, на деформацию металлической матрицы или на обменное взаимодействие в подсистеме магнитных атомов.

4. Дополнение

Естественно возникает вопрос о приложимости приведенных результатов к другим гидридам со структурой AB_2D_x . С этой целью (по предложению рецензента журнала) мы проанализировали структуру соединения $YMn_2D_{4.3}$, исследованного в [10].

Таблица 2. Значения N_L , Q_z и n_L

L	N_L	Q_z	n_L
3/4	3	21, 13 ,17	0
1	3	23,15,19	1
11/8	6	22, 24, 14 , 16, 18, 20	0.5
13/8	6	10,12,1,3,5,7	0
2	3	4,8,9	1
9/4	3	2 ,6,11	0

Результаты нейтронографических исследований YMn₂D_{4 3} оказалось удобным интерпретировать [10] на основе ромбоэдрически искаженной примитивной ячейки ГЦК решетки, содержащей 24 междоузельных позиций типа A_2B_2 (по одной от каждой из 24 подрешеток). В этой ячейке водородные позиции представляются расположенными в плоскостях, перпендикулярных кристаллографической оси [111] [10], т.е. удовлетворяющих уравнению x + y + z = L. Если поместить точку отсчета координат на ось [111] таким образом, что соседствующие Ү-атомы приобретут координаты (1/81/81/8) и $(\overline{1}/8\overline{1}/8\overline{1}/8)$ (мы пользуемся прямоугольной системой координат в отличие от косоугольной, использованной в [10]), то плоскостям, в которых располагаются позиции А2В2, будут отвечать значения L = 3/4, 1, 11/8, 13/8, 2, 9/4. В табл. 2 для каждой из L-плоскостей приведены числа позиций N_L (в пределах данной примитивной ячейки), указаны номера подрешеток Q_z , к которым принадлежат эти позиции, и отмечены также вероятности заполнения данных междоузлий D-атомами n_L (согласно [10]).

В таблице жирным шрифтом отмечены номера подрешеток, где согласно функции распределения (1) в случае x = 4 вероятность заполнения узлов при [$\eta_1 = 1, \eta_2 = 1$] должна была бы быть равной $n_1 = 1$. Как видим, предлагаемое в [10] упорядочение водорода не согласуется с предложенной в [5] и рассмотренной нами функцией распределения, что указывает на различное поведение водородной подсистемы в соединениях YMn₂D_x и HfV₂D_x.

Необходимо отметить, что водородная подсистема в других соединениях типа RMn_2D_x (R = Gd,Tb,Dy,Ho) упорядочивается так же, как и в соединени YMn_2D_x [11]. Нам кажется, что это однозначно указывает на решающую роль магнито-упругого взаимодействия в данных гидридах, обусловленного магнитными моментами атомов марганца и редких земель.

К сожалению, свободная энергия (14) не позволяет учитывать роль магнитной подсистемы, поэтому анализ гидридов RMn_2D_x должен стать предметом отдельного исследования, основанного на функции, включающей в себя дополнительные слагаемые, отражающие магнитоупругое взаимодействие.

Список литературы

- [1] Н.Ф. Мирон, В.И. Щербак, В.Н. Быков, В.А. Левдик. Кристаллография **16**, *2*, 324 (1971).
- [2] А.В. Иродова, В.П. Глазков, В.А. Соменков, С.Ш. Шильштейн. ФТТ **22**, *1*, 79 (1980).
- [3] P. Fischer, F. Fauth, A.V. Skripov, A.A. Podlesnyak, L.N. Padurets, A.L. Shilov, B. Ouladdiaf. J. All. Comp. 253– 254, 282 (1997).
- [4] V. Paul-Boncour, L. Guenee, M. Latroche, M. Escorne, A. Percheron-Guegan, Ch. Reichl, G. Wiesinger. J. All. Comp. 253–254, 272 (1997).
- [5] А.В. Иродова. ФТТ **22**, *9*, 2559 (1980).
- [6] А.Г. Хачатурян. Теория фазовых превращений и структура твердых растворов. Наука, М. (1974). 384 с.
- [7] И.Г. Ратишвили. ФТТ 21, 7, 1990 (1979).
- [8] I.G. Ratishvili. Phys. Stat. Sol. (b) 87, 2, 461 (1978).
- [9] I.G. Ratishvili, P. Vajda, A. Boukraa, N.Z. Namoradze. Phys. Rev. B49, 22, 15461 (1994).
- [10] I.N. Goncharenko, I. Mirebeau, A.V. Irodova, E. Suard. Phys. Rev. B56, 5, 2580 (1997).
- [11] I.N. Goncharenko, I. Mirebeau, A.V. Irodova, E. Suard. Phys. Rev. B59, 14, 9324 (1999).