Динамика фоторефрактивного отклика в кристаллах силленитов с двукратно ионизируемыми донорными центрами и мелкими ловушками

© А.М. Плесовских, С.М. Шандаров, Е.Ю. Агеев

Томский государственный университет систем управления и радиоэлектроники, 634050 Томск, Россия

E-mail: shand@stack.ru

(Поступила в Редакцию 8 июня 2000 г.)

Проведен анализ динамики фоторефрактивного отклика в кристалле Bi₁₂TiO₂₀ с двукратно ионизируемыми донорными центрами и мелкими ловушками. Рассмотрены временные зависимости процессов записи фоторефрактивной решетки в отсутствие внешнего электрического поля, ее хранения в темноте и проявления при приложении внешнего поля и включении считывающего светового пучка.

При записи голографических решеток в фоторефрактивных кристаллах силленитов наблюдаются эффекты немонотонной динамики дифракционной эффективности [1-3], проявления скрытого изображения [4], фотоиндуцированного поглощения света [5], не поддающиеся описанию в рамках одноуровневой монополярной модели зонного переноса [6]. Для рассмотрения фотоиндуцированного поглощения света в модель вводят дополнительный мелкий ловушечный уровень [7], а немонотонную зависимость от времени фоторефрактивного отклика обычно объясняют влиянием на него неосновных носителей заряда (дырок) в номинально нелегированных кристаллах $B_{12}SiO_{20}$ и $Bi_{12}TiO_{20}$ [1-3]. Однако из работ А.И. Грачева [8,9] следует, что в области примесного поглощения вклад дырок в фотопроводимость данных материалов пренебрежимо мал по сравнению с электронным.

В настоящей работе показано, что наблюдаемые в кристаллах силленитов особенности голографической записи могут быть объяснены на основе модели [10], включающей глубокие донорные центры, допускающие двукратную ионизацию, и мелкие ловушки.

Система материальных уравнений, описывающая процессы перераспределения зарядов в таком кристалле, имеет вид

$$\frac{\partial N_D^{1+}}{\partial t} = S_D I (N_D - N_D^{1+} - N_D^{2+}) - \gamma_1 n N_D^{1+} + \gamma_2 n N_D^{2+} - S_1 I N_D^{1+}, \qquad (1)$$

$$\frac{\partial N_D^{2+}}{\partial t} = S_1 I N_D^{1+} - \gamma_2 n N_D^{2+}, \qquad (2)$$

$$\frac{\partial M}{\partial t} = -(S_T I + \beta)M + \gamma_T n(M_T - M), \qquad (3)$$

$$\frac{\partial}{\partial t} \left(N_D^{1+} + 2N_D^{2+} - M - n \right) + \frac{1}{e} \nabla \cdot \left(e\mu nE + \mu k_B T \nabla n \right) = 0, \tag{4}$$

$$\nabla \cdot E = -\frac{e}{\varepsilon}(n - N_D^{1+} - 2N_D^{2+} + N_A + M), \qquad (5)$$

где N_D , M_T и N_A — общие концентрации доноров, мелких ловушек и акцепторов; N_D^{1+} , N_D^{2+} , M и n — концентрации

однократно и двукратно ионизированных доноров, заполненных мелких ловушек и электронов соответственно; S_D , S_1 , S_T и γ_1 , γ_2 , γ_T — сечения фотоионизации и постоянные рекомбинации для нейтральных (D), однократно (1) и двукратно (2) ионизированных доноров и мелких ловушек (T); β — коэффициент термического возбуждения мелких ловушек, μ — подвижность электронов, k_B — постоянная Больцмана, T — температура, e — элементарный электрический заряд, ε — статическая диэлектрическая проницаемость кристалла.

Рассмотрим фоторефрактивную решетку, сформированную в кристалле при взаимодействии опорного и сигнального пучков с интенсивностями I_R и I_S . Для интерференционной картины

$$I = I_0 [1 + m \cos(Kz)],$$
(6)

где $I_0 = I_R + I_S$ — средняя интенсивность и $m = 2\sqrt{I_R I_S}/I_0$ — ее контраст, считаем векторы решетки $K = Kz_0$ и внешнее приложенное поле $E_0 = E_0 z_0$ направленным вдоль оси *z* координатной системы. В приближении малого контраста $m \ll 1$ уравнения (1)–(5) могут быть линеаризованы представлением решений для функций $N_D^{1+}(z,t)$, $N_D^{2+}(z,t)$, M(z,t), n(z,t) и E(z,t) в виде

$$F(z,t) = F_0(t) + 0.5 [F_1(t) \exp(iKz) + F_2^*(t) \exp(-iKz)].$$
(7)

Использование приближений квазинепрерывного освещения $\partial n/\partial t = 0$ и низкой интенсивности I_0 , когда средняя концентрация электронов является малой в сравнении со средними значениями для других зарядовых решеток, приводит к двум системам уравнений для амплитуд нулевой $(N_0^{1+}, N_0^{2+}, M_0 \, u \, n_0)$ и первой $(N_1^{1+}, N_1^{2+}, M_1 \, u \, n_1)$ пространственных гармоник. Первая из них содержала уравнения, не включающие амплитуды первых гармоник и внешнее поле, и была проинтегрирована численно для случая включения освещения кристалла при t = 0 и начальных условий $N_0^{1+}(0) = N_A, N_0^{2+}(0) = 0$ и $M_0(0) = 0$. Полученные зависимости средних концентраций зарядов $N_0^{1+}(t)$,

Рис. 1. Динамика изменения амплитуды поля пространственного заряда фоторефрактивной решетки с периодом $\Lambda = 5 \,\mu$ m при изменении условий ее формирования. Выключение опорного и сигнального пучков происходит при t = 1000 s, включение постоянного электрического поля с амплитудой $E_0 = 17.5 \,\text{kV/cm}$ при $t = 1400 \,\text{s.}$ I-3 - включение считывающего пучка в моменты времени $t^s = 2000$, 2500 и 3000 s соответственно.

 $N_0^{2+}(t)$, $M_0(t)$ и $n_0(t)$ использовались далее при численном интегрировании системы уравнений для первых пространственных гармоник. Методика анализа динамики фоторефрактивного отклика позволяла моделировать

включение и выключение опорного и сигнального пучков и постоянного внешнего поля, приложенного к кристаллу, в произвольные моменты времени. Амплитуда первой гармоники поля пространственного заряда в соответствии с соотношениями (5) и (7) определялась из уравнения

$$E_1(t) = -i\frac{e}{\varepsilon K} \left[N_1^{1+}(t) + 2N_1^{2+}(t) - M_1(t) - n_1(t) \right].$$
(8)

Типичные зависимости, характеризующие динамику изменения поля пространственного заряда фоторефрактивной решетки с периодом $\Lambda = 2\pi/K = 5\,\mu \mathrm{m}$ при изменении условий ее записи и восстановления, представлены на рис. 1 для кристалла Bi₁₂TiO₂₀ с параметрами $M_T = N_D = 10^{25} \,\mathrm{m}^{-3}, N_A = 10^{22} \,\mathrm{m}^{-3},$ $6.5 \cdot 10^{-6} \,\mathrm{m^2/J}, S_T =$ $10^{-4} \,\mathrm{m}^2/J$ S_D _ $2.5 \cdot 10^{-6} \,\mathrm{m^2/J}, \ \gamma_1 = 3.5 \cdot 10^{17} \,\mathrm{m^3/s},$ S_1 = $2.6 \cdot 10^{-17} \,\mathrm{m}^2/s, \ \gamma_2 = 4.9 \cdot 10^{-18} \,\mathrm{m}^3/s,$ γ_T = $\beta = 5.5 \cdot 10^{-5} \,\mathrm{s}^{-1} \,[10]$ и $\mu = 2 \cdot 10^{-6} \,\mathrm{m}^2 / (\mathrm{V} \cdot \mathrm{s}).$ После освещения кристалла в момент времени $t_0 = 0$ интерференционной картиной с контрастом m = 0.1и средней интенсивностью $I_0 = 100 \,\mathrm{W/m^2}$ амплитуда первой гармоники поля пространственного заряда начинает нарастать за счет диффузионного механизма

Рис. 2. Динамика изменения средних значений (*a*) и амплитуды первых пространственных гармоник (*b*) для мелких ловушек (*1*), однократно (*2*) и двукратно (*3*) ионизированных доноров и электронов (*4*). Условия формирования решетки соответствуют рис. 1.

Рис. 3. Временные зависимости нормированного на пространственный период сдвига зарядовых решеток вдоль координаты *z* относительно их первоначального положения для мелких ловушек (1), однократно (2) и двукратно (3) ионизированных доноров и электронов (4). Условия те же, что и для рис. 1.

формирования решетки. Характерно, что это нарастание происходит при одновременном изменении средних значений концентраций N_0^{1+} , N_0^{2+} и M_0 для однократно и двукратно ионизированных доноров и мелких ловушек (рис. 2, *a*). Средняя концентрация электронов в зоне проводимости монотонно увеличивается (кривая 4 на рис. 2, *a*), т.е. процесс формирования решетки происходит в условиях нестационарной фотопроводимости. В результате рост поля пространственного заряда носит немонотонный характер, после достижения максимума при $t \approx 200$ s оно начинает медленно уменьшаться (рис. 1). Отметим, что нестационарная фотопроводимость была указана в качестве причины немонотонности динамики поля пространственного заряда в работе [9].

Считалось, что при $t_1 = 1000$ s одновременно выключаются оба световых пучка, формирующих фоторефрактивную решетку ($I_R = I_S = 0, m = 0$). Из-за резкого падения концентрации электронов в зоне проводимости, которые возбуждаются в нее только термически с мелких ловушек, процессы перераспределения зарядов по уровням при $t > t_1$ сильно замедляются. Однако, если для средних концентраций (рис. 2, *a*) их уменьшение практически незаметно, падение амплитуды поля пространственного заряда E_1 в темновых условиях хорошо прослеживается на рис. 1.

После приложения к кристаллу постоянного внешнего поля с амплитудой $E_0 = 17.5$ kV/cm в момент времени $t_2 = 1400$ s начинается монотонный рост амплитуды первой пространственной гармоники в отстутствие обоих световых пучков (рис. 1). Этот процесс продолжается до тех пор, пока не происходит включение единственного считывающего пучка с интенсивностью $I_R = 100$ W/m² при некотором $t = t^s$. Во всех трех представленных на рис. 1 случаях включение считывающего пучка приводит к быстрому нарастанию амплитуды решетки до значения $|E_1| \approx 280 \text{ V/cm}$ с последующим, сравнительно медленным ее уменьшением. Таким образом, представленная модель описывает эффекты усиления скрытого изображения в темновых условиях в кристалле при приложении внешнего поля и его проявления при включении считывающего света, наблюдаемые ранее экспериментально [4].

Физической причиной эффектов усиления и проявления является пространственный сдвиг зарядовых решеток, соответствующих однократно и двукратно ионизированным донорам и мелким ловушкам, относительно друг друга без изменения их амплитуды. Это хорошо видно на рис. 2, b и 3, изображающих динамику первых пространственных гармоник концентраций $N_1^{1+}(t)$, $N_1^{2+}(t)$, $M_1(t), n_1(t)$ и их сдвига вдоль координаты z относительно первоначального положения. В темновых условиях этот сдвиг начинается после включения внешнего поля при $t_2 = 1400 \,\mathrm{s}$ и является медленным ввиду малой проводимости кристалла. Отметим, что пространственный сдвиг зарядовых решеток во внешнем поле можно трактовать как возбуждение волн перезарядки ловушек [11]. Сразу после включения считывающего пучка при $t = t^s$ концентрация электронов в зоне проводимости резко увеличивается, а скорость волн перезарядки ловушек возрастает. Однако в отсутствие сигнального пучка при $t > t^s$ заметно возрастает скорость уменьшения амплитуды зарядовых решеток (рис. 2, b), что приводит к медленному падению амплитуды поля пространственного заряда (рис. 1), т.е. к стиранию фоторефрактивной решетки считывающим пучком.

Авторы благодарят О.В. Кобозева за полезные обсуждения.

Список литературы

- [1] А.А. Камшилин, М.П. Петров. ФТТ 23, 3110 (1981).
- [2] S.G. Odoulov, K.V. Shcherbin, A.N. Shumelyuk. J. Opt. Soc. Am. B11, 1780 (1994).
- [3] M. Miteva, L. Nicolova. Opt. Commun. 67, 192 (1988).
- [4] М.П. Петров, М.Г. Шмелин, Н.О. Шалаевский, В.М. Петров, А.М. Хоменко. ЖТФ 55, 2247 (1985).
- [5] S. Shandarov, A. Reshet'ko, A. Emelyanov, O. Kobozev, M. Krause, Yu. Kargin, V. Volkov. Proc. SPIE 2969, 202 (1996).
- [6] N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, V.L. Vinetskii. Ferroelectrics 22, 949 (1979).
- [7] P. Tayebati, D. Mahgerefteh. J. Opt. Soc. Am. B8, 1053 (1991).
- [8] А.И. Грачев. ФТТ 40, 2178 (1998).
- [9] А.И. Грачев. ФТТ 41, 1012 (1999).
- [10] O.V. Kobozev, S.M. Shandarov, A.A. Kamshilin, V.V. Prokofiev. J. Opt. A: Pure Appl. Opt. 1, 442 (1999).
- [11] А.С. Фурман. ФТТ 29, 4, 1076 (1987).