Влияние гидрирования на спин-переориентационные фазовые переходы и константы магнитной анизотропии монокристаллов RFe₁₁Ti (R = Lu, Ho, Er)

© С.А. Никитин*, И.С. Терешина*, Ю.В. Скурский*,***, Н.Ю. Панкратов*, К.П. Скоков**, В.В. Зубенко*, И.В. Телегина*

* Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия
** Тверской государственный университет, 170000 Тверь, Россия
*** Международная лаборатория сильных магнитных полей и низких температур, 53-421 Вроцлав, Польша
E-mail: nikitin@rem.phys.msu.su

(Поступила в Редакцию 13 марта 2000 г. В окончательной редакции 11 июня 2000 г.)

Исследована магнитная анизотропия и спин-переориентационные фазовые переходы в монокристаллах соединений $RFe_{11}Ti$ (R = Lu, Ho, Er) и монокристаллов их гидридов. Измерения проводились на емкостном магнитометре и магнитном анизометре. Константы магнитной анизотропии K_1 и K_2 определялись с помощью математической обработки экспериментальных кривых намагничивания на основе феноменологической теории процессов намагничивания анизотропных ферромагнетиков. Показано, что гидрирование оказывает сильное влияние на спин-переориентационные фазовые переходы, на величину и знак констант магнитной анизотропии. В соединении HoFe₁₁Ti в результате гидрирования происходит смена знака константы магнитной анизотропии K_1 . Сделан вывод, что изменение атомного объема и осевого отношения c/a не может привести к наблюдаемым эффектам. Изменение констант магнитной анизотропии при гидрировании обусловлено в основном изменением взаимодействия квадрупольного момента электронной 4*f*-подоболочки ионов редкоземельных электронами проводимости.

Работа поддержана федеральной программой поддержки ведущих научных школ (грант № 00-15-96695) и грантом РФФИ № 99-02-17821.

Соединения *R*Fe₁₁Ti, имеющие кристаллическую структуру типа ThMn₁₂, активно изучаются в ряде лабораторий [1–3]. Благодаря особенностям кристаллической и магнитной структуры, эти сплавы являются удобными модельными объектами для исследования фундаментальных проблем физики магнитных явлений.

Соединения *R*Fe₁₁Ti можно рассматривать как двухподрешеточный магнетик [2]. Подрешетка редкоземельного металла (P3M) и подрешетка железа вносят свои вклады как в результирующую намагниченность, так и в результирующую аназотропию. Для легких P3M имеет место ферромагнитное упорядочение магнитных моментов обеих подрешеток, а в случае тяжелых P3M ферримагнитное. При низких температурах вклад в результирующую анизотропию от подрешетки P3M является доминирующим, в то время как при высоких температурах — преобладает вклад от подрешетки Fe. Компенсация вкладов в анизотропию от двух подрешеток в некоторых соединениях, таких как TbFe₁₁Ti и DyFe₁₁Ti, приводит к спин-переориентационным переходам (СПП) при изменении температуры [4,5].

Цель данной работы — подробное изучение влияния гидрирования на константы магнитокристаллической анизотропии соединений $RFe_{11}Ti$ (R = Lu, Ho, Er). Впервые для решения поставленной задачи проведены измерения кривых намагничивания монокристаллов гидридов соединений LuFe₁₁TiH, HoFe₁₁TiH, ErFe₁₁TiH, которые сопоставлялись с аналогичными кривыми для исходных образцов монокристаллов LuFe₁₁Ti, HoFe₁₁Ti, ErFe₁₁Ti.

1. Технология приготовления образцов и методика измерений

Технология приготовления и контроль качества образцов RFe_{11} Ті аналогичны приведенным ранее в работе [6]. Для магнитных измерений использовались образцы в виде монокристаллических блоков, имеющих разориентировку в пределах одного–двух градусов. Контроль кристаллов производился по рентгенограммам Лауэ. Образцам придавалась форма дисков (для измерений на анизометре) диаметром ~ 4 и толщиной ~ 0.3–0.4 mm. Плоскость дисков совпадала с кристаллографическими плоскостями (110) либо (001). Для измерения кривых намагничивания образцам придавалась форма шариков диаметром ~ 2 mm.

Гидрирование монокристаллов производилось по методике, о которой подробно сообщалось в предыдущей работе [7]. Содержание водорода в гидриде составляло для всех изученных составов приблизительно один атом водорода на формульную единицу. При этом погрешность определения количества поглощенного водорода составляла $\delta = \pm 0.05$ атомов водорода на формульную единицу (at.H/f.u.).

Рентгенофазовый анализ гидридов проводили на дифрактометре "Дрон-2" (Си- K_{α}) на порошковых образцах. Анализ показал, что исследуемые образцы являются однофазными и кристаллизуются в структурном типе ThMn₁₂ с периодами решетки, хорошо согласующимися с литературными данными [8]. На дифрактограммах присутствуют отражения, соответствующие только этой структуре. Примесей α -железа, которые иногда существуют в богатых железом литых сплавах, на дифрактограммах не обнаружено.

Магнитные измерения проводились с помощью магнитного анизометра и емкостного магнетометра. Экспериментальные кривые механического вращающего момента измерялись на магнитном анизометре в интервале температур 77–700 К в магнитных полях до 13 kOe. Значения момента фиксировались через каждые 2 градуса угла поворота монокристалла относительно магнитного поля. Кривые намагничивания были получены с помощью емкостного магнитометра в Международной лаборатории сильных магнитных полей и низких температур (г. Вроцлав, Польша) в области температур от 4.2 до 300 К в полях до 140 kOe.

Для определения констант магнитной анизотропии применялся метод, заключающийся в специальной математической обработке кривых намагничивания, измеренных вдоль легкого и трудного направлений с помощью теоретических соотношений, полученных на основе феноменологической теории процессов намагничивания анизотропных магнетиков [9].

2. Результаты измерений и обсуждение

2.1. Влияние гидрирования на магнитную анизотропию соединения Lu Fe₁₁ Ti. На рис. 1 представлены кривые намагничивания монокристаллов LuFe₁₁ Ti и LuFe₁₁ TiH при 4.2 K. Видно, что намагниченность насыщения при гидрировании заметно возрастает (~10%). Кривая намагничивания, измеренная вдоль оси легкого намагничивания (ось с — кристаллографическое направление [001]), насыщается в сравнительно слабых полях, в то время как кривая намагничивания в поле, перпендикулярном оси с в базисной плоскости (направление [110]), достигает насыщения в полях, превышающих поле магнитной анизотропии, $H_A = 54$ для LuFe₁₁TiH и 40 kOe для LuFe₁₁Ti. Константа магнитной анизотропии K_1 была найдена из соотношения

$$K_1 = H_A M_S / 2$$

где M_S — намагниченность насыщения (магнитный момент на единицу объема). Высокая ($K_1 = 1.9 \cdot 10^7 \text{ erg/cm}^3$) магнитокристаллическая анизотропия соединения LuFe₁₁Ti является следствием частичного "размораживания" орбитального момента L ионов Fe в анизотропном локальном кристаллическом поле, которое сильно отличается для различных кристаллографических позиций. При этом составляющая орбитального момента L ориентируется вдоль направления легкого намагничивания, ориентируя в свою очередь суммарный спиновый момент за счет спин-орбитального взаимодействия.

Сделанное выше предположение о природе магнитокристаллической анизотропии подтверждается нейтронографическими исследованиями [10], которые показали что, к примеру, в соединении YFe₁₁Ti магнитные моменты, локализованные на атомах Fe, которые в структуре ThMn₁₂ располагаются в трех неэквивалентных позициях 8i, 8j и 8f, равны 1.92, 2.28, $1.8\mu_B$ соответственно. Эти значения сильно отличаются от тех, которые наблюдаются у двух- и трехвалентных ионов железа (4 и $5\mu_B$ соответственно). Аналогичная ситуация, по-видимому, наблюдается и у соединения LuFe₁₁Ti. Отсюда следует, что магнетизм подрешетки железа имеет в определенной степени зонный характер.

Рассмотрим влияние гидрирования на температуру магнитного упорядочения соединения LuFe₁₁Ti. Известно [11], что гидрирование увеличивает межатомные расстояния и объем элементарной ячейки и в ряде соединений, таких как R_2 Fe₁₇, приводит к сильному росту температуры Кюри. В соединении LuFe₁₁Ti температура Кюри T_C определяется обменными взаимодействиями между Fe–Fe-атомами, поскольку ион лютеция не обладает локализованным магнитным моментом.

В нашей работе температура Кюри Т_С определялась как температура наиболее резкого падения намагниченности при переходе из ферромагнитного состояния в парамагнитное в слабом магнитном поле. Тс для LuFe₁₁Ti была найдена равной 490 К, что намного меньше, чем у металлического железа. Проведенный расчет межатомных расстояний в соединении LuFe₁₁Ti показал, что самые короткие расстояния между атомами Fe существуют в парах 8f-8f и 8i-8i и равны 2.358 и 2.390 Å соответственно. При таких коротких расстояниях между Fe-Fe-атомами возможны отрицательные обменные взаимодействия. Гидрирование соединения LuFe₁₁Ti приводит к заметному увеличению постоянной решетки а и объема элементарной ячейки V (относительное изменение объема $\Delta V/V \approx 1.6\%$) и лишь незначительно изменяет постоянную решетки с (см. табл. 1). В гидриде LuFe₁₁TiH происходит значительное повышение температуры Кюри почти на 55 К. Увеличение Т_С можно объяснить возрастанием энергии обмена при увеличении расстояний между атомами железа и атомного объема.

При введении водорода в кристаллическую решетку соединения LuFe₁₁Ti (рис. 1) происходит также существенное увеличение намагниченности насыщения при T = 4.2K ($\sigma_s = 130$ для LuFe₁₁Ti и 144 emu/g для

Рис. 1. Кривые намагничивания монокристаллов LuFe₁₁Ti (*a*) и LuFe₁₁TiH (*b*) вдоль направлений [001] и [110] при *T* = 4.2 K.

LuFe₁₁TiH). Наши исследования показали, что зависимость $\sigma_S(T)$ для соединения LuFe₁₁TiH имеет типичный ферромагнитный характер, как и у исходного соединения с монотонным уменьшением намагниченности σ при нагреве.

Представляло также интерес получить информацию о характере эффектов, ответственных за изменение магнитной анизотропии при гидрировании. Известно, что в рамках одноионной теории для локализованных моментов выражение для константы магнитной анизотропии K_1 имеет вид [12]

$$K_1 \sim M_S^3 \cdot [1 - (c/a)^2].$$
 (1)

Однако оценка по этой формуле изменения K_1 вследствие изменения намагниченности с гидрированием и осевого отношения $\eta = c/a$ не приводит к удовлетворительным результатам. Из данных табл. 1 и формулы (1) вытекает, что следует ожидать изменения $K_1 \sim$ на 2.7%, в то время как экспериментально наблюдаемое изменение K_1 оказалось выше и составило $\sim 10\%$.

Из этого следует, что теория магнитной анизотропии, использующая приближение одноионной модели, в нашем случае является недостаточной. При гидрировании происходит не только изменение кристаллических полей, создаваемых зарядами окружающих ионов, но также возникают большие по величине эффекты другой природы.

Соединения $RFe_{11}Ti$ абсорбируют до двух атомов водорода на формульную единицу. При этом процесс внедрения легких элементов, таких как водород, можно рассматривать как процесс образования соединения $RFe_{11}TiH_x$ (где x — концентрация водорода) с совершенно новыми магнитными свойствами (температу-

рой Кюри, намагниченностью насыщения, магнитной анизотропией). Атомы водорода могут располагаться в структуре ThMn₁₂ в двух типах междоузлий: тетраэдрических и октаэдрических в зависимости от концентрации водорода. При малых концентрациях водорода ($x \le 1$) атомы Н располагаются в октаэдрических позициях, а при концентрациях водорода *x* > 1 атомы Н начинают заполнять и тетраэдрические позиции. При гидрировании LuFe₁₁Ti концентрация водорода составляла $x \approx 1$, следовательно, атомы водорода располагались в октаэдрических междоузлиях [13]. Из экспериментальных данных (см. табл. 1) следует, что при гидрировании происходит увеличение объема элементарной ячейки. Это приводит к сужению 3*d*-зоны коллективизированных 3*d*-электронов. Изменение локального окружения атомов Fe вследствие внедрения атомов водорода ослабляет валентную связь между атомами железа и перераспределяет электронную плотность валентных электронов [14] и электронов проводимости [15]. Именно этими эффектами, по-видимому, можно объяснить возрастание константы магнитной анизотропии LuFe₁₁TiH, которое наблюдается в настоящей работе.

Итак, проведенное исследование показало, что гидрирование монокристаллов LuFe₁₁Ti привело к увеличению температуры Кюри, намагниченности насыщения и константы магнитной анизотропии K_1 .

2.2. Влияние гидрирования на магнитную анизотропию монокристалла Но Fe₁₁ Ti. Ионы Ho³⁺ в отличие от Lu³⁺ обладают локализованным магнитным моментом, отличным от нуля. Кристаллографические данные (параметры элементарной ячейки *a* и *c*, объем элементарной ячейки *V*) HoFe₁₁Ti и его

Таблица 1. Параметры кристаллической решетки (*a* и *c*), объем элементарной ячейки (*V*), константа магнитной анизотропии K_1 и удельная намагниченность насыщения σ_s при T = 4.2 K для соединения LuFe₁₁Ti и его гидрида

Соединение	a,Å	c,Å	c/a	$V, Å^3$	$\Delta V/V,$ %	$K_1 \cdot 10^7$, erg/cm ³	T_C, \mathbf{K}	H _A ,kOe	σ_S , emu/g
LuFe ₁₁ Ti	8.42	4.78	0.57	338.9		1.9	490	40	130
LuFe ₁₁ TiH	8.48	4.79	0.56	344.5	1.6	2.13	545	54	144

Рис. 2. Кривые намагничивания монокристалла HoFe₁₁Ti вдоль кристаллографических направлений [001], [110] и [100] при разных температурах.

гидрида помещены в табл. 2. Относительное изменение объема элементарной ячейки $\Delta V/V$ при гидрировании составляло 1.2%. Осевое отношение c/a, как и в случае LuFe₁₁Ti, слегка уменьшилось в результате внедрения атомов водорода в октаэдрические позиции.

Из измерений магнитных свойств и магнитной анизотропии, выполненных с помощью магнитного анизометра и магнетометра, следует, что монокристалл НоFe₁₁Ti обладает одноосной магнитной анизотропией во всем исследованном интервале температур от 4.2 K до температуры Кюри, что является аномальным для данного класса соединений. Это объясняется тем [4], что в потенциал кристаллического поля, действующего на редкоземельный ион в случае Но, вносят значительный вклад параметры кристаллического поля более высокого, чем второй, порядка, а именно четвертого и шестого.

Таблица 2. Кристаллографические данные для монокристалла НоFe₁₁Ti и его гидрида

Состав	a,Å	c,Å	c/a	$V, Å^3$	$\Delta V/V,$ %
HoFe ₁₁ Ti	8.46	4.75	0.5615	339.9	
HoFe ₁₁ TiH	8.50	4.76	0.5600	343.9	1.2

На рис. 2 представлены полевые зависимости намагниченности для монокристалла HoFe₁₁Ti, измеренные при разных температурах вдоль оси легкого намагничивания [001] и осей [110] и [100] в базисной плоскости в полях до 70 kOe. Из рис. 2 следует, что HoFe₁₁Ti является высокоанизотропным магнетиком (поле магнитной анизотропии H_A заметно превышает 70 kOe при T = 4.2 K), причем H_A сильно уменьшается с повышением температуры (например, при T = 300 K $H_A = 35$ kOe).

На кривых намагничивания монокристалла HoFe₁₁Ti вдоль направлений [110] и [100] в базисной плоскости (рис. 2) наблюдается резкий скачок намагниченности в интервале температур 4.2-80 К при некоторых пороговых полях H_{cr}, что можно объяснить необратимым вращением вектора намагниченности при $H = H_{cr}$. Полученные аномальные зависимости намагниченности от магнитного поля подтверждаются опубликованными ранее экспериментальными данными [4] для монокристаллических образцов НоFe11Ti. Следует отметить, что переходы при $H = H_{cr}$, сопровождающиеся резким скачком намагниченности, являются переходами первого рода. Эти переходы (First Order Magnetization Process — FOMP), изученные теоретически рядом исследователей [9,16], происходят в результате переброса вектора намагниченности между двумя неэквивалентными минимумами свободной энергии анизотропии в достаточно сильном магнитном поле. Теория процессов типа FOMP была детально рассмотрена для одноосных ферромагнетиков Асти и Болзони [9] при учете констант магнитной анизотропии вплоть до третьего порядка. Однако экспериментальное наблюдение таких переходов в интерметаллических соединениях РЗМ-Fe представляет определенные экспериментальные трудности вследствие необходимости иметь достаточно совершенные монокристаллы, сильные магнитные поля и низкие температуры. Предполагая, что в полях до 100 kOe сохраняется антипараллельная ориентация магнитных моментов подрешеток РЗМ и Fe, рассмотрим возможность описания экспериментальных кривых намагничивания на основе теоретических соотношений [9]. Наше предположение кажется достаточно обоснованным, так как приложенные магнитные поля значительно меньше обменных: обменное поле внутри подрешетки Fe составляет $8.1 \cdot 10^6$ Oe, а обменное поле между подрешетками равно 2.7 · 10⁶ Ое.

Согласно теории [9], при намагничивании одноосного ферромагнетика перпендикулярно тетрагональной оси cвыражение для полной энергии с учетом констант анизотропии первого K_1 , второго K_2 и третьего K_3 порядков записывается в виде

$$F = K_1 \sin^2 \theta + K_2 \sin^4 \theta + K_3 \sin^6 \theta - HM_S \sin \theta, \quad (2)$$

где θ — угол между вектором намагниченности M_S и осью c. Уравнение равновесия $dF/d\theta = 0$ записывается соответственно

$$HM_S = 2\sin\theta(K_1 + 2K_2\sin^2\theta + 3K_3\sin^4\theta).$$
(3)

Физика твердого тела, 2001, том 43, вып. 2

При использовании нормализованных переменных $h = 2H/|H_{A1}|$ и $m = M/M_S = \sin\theta$ ($H_{A1} = 2K_1/M_S$) получаем

$$h = 2m(1 + 2xm^2 + 3ym^4)K_1/|K_1|, \qquad (4)$$

где $x = K_2/K_1$ и $y = K_3/K_1$.

Согласно [9], могут осуществляться два типа индуцированных магнитным полем переходов первого рода: а именно FOMP-1 и FOMP-2, которые различаются конечным состоянием намагниченности. При FOMP-1 происходит резкий скачок намагниченности в состояние насыщения. При FOMP-2 намагниченность в конечном состоянии не достигает насыщения и условием перехода является равенство энергии в конечном и начальном состояниях. При намагничивании перпендикулярно оси *с* (в базисной плоскости) условие перехода первого рода записывается в виде

$$K_1 m_1^2 + K_2 m_1^4 + K_3 m_1^6 - H M_S m_1$$

= $K_1 m_2^2 + K_2 m_2^4 + K_3 m_2^6 - H M_S m_2$, (5)

где *m*₁ и *m*₂ — относительные значения намагниченности для начала и конца перехода. Оба значения подчиняются условию устойчивости. Отсюда получается система уравнений

$$(m_1+m_2)+x(m_1^2+m_2^2)+y\{(m_1^2+m_2^2)^2+m_1^2m_2^2\} = hK_1/|K_1|,$$

$$h = 2m_1(1+2xm_1^2+3ym_1^4)K_1/|K_1|,$$

$$h = 2m_2(1+2xm_2^2+3ym_2^4)K_1/|K_1|.$$
 (6)

Критические поля и намагниченность в области перехода определяются соотношениями

$$h_{cr} = \frac{2}{5}A \left[2 - \frac{17x^2 + x\sqrt{60y - 11x^2}}{30y} \right],$$

$$m_1 = \frac{A - D}{2}, \qquad m_2 = \frac{A + D}{2}, \qquad (7)$$

где

$$A = \left[\frac{-3x + \sqrt{60y - 11x^2}}{10y}\right]^{1/2},$$
$$D = \left[\frac{-5x - \sqrt{60y - 11x^2}}{6y}\right]^{1/2}.$$
(8)

Для соединений RFe_{11} Ті с тетрагональной симметрией при низких температурах существенный вклад в энергию магнитной анизотропии вносят константы анизотропии в базисной плоскости второго K'_2 и третьего K'_3 порядков. С учетом анизотропии в базисной плоскости энергию (2) можно записать в следующем виде:

$$F = K_1 \sin^2 \theta + (K_2 + K'_2 \cos 4\varphi) \sin^4 \theta + (K_3 + K'_3 \cos 4\varphi) \sin^6 \theta - HM_S \sin \theta.$$
(9)

Рис. 3. Кривые намагничивания монокристалла HoFe₁₁TiH вдоль кристаллографических направлений [001], [110] и [100] при разных температурах.

Для направления [100] $\cos 4\varphi = 1$ и в выражении для полной энергии можно использовать эффективные константы ($K_2 + K'_2$) и ($K_3 + K'_3$). Аналогично для направления [110] $\cos 4\varphi = -1$, и эффективные константы будут иметь вид ($K_2 - K'_2$) и ($K_3 - K'_3$).

Исходя из экспериментальных значений h_{cr} , m_1 и m_2 , с помощью математической обработки полученных результатов на основе приведенных выше формул мы получили следующие значения констант магнитокристаллической анизотропии для HoFe₁₁Ti при T = 4.2 K: $K_1 = 4.7 \cdot 10^7, K_2 = -9.1 \cdot 10^7, K_3 = 6.8 \cdot 10^7, K'_2 = 1.0 \cdot 10^7$ и $K'_3 = -2.2 \cdot 10^7$ erg/cm³.

Как видно из рис. 3, на полевых зависимостях намагниченности HoFe₁₁TiH не наблюдаются пороговые поля, что указывает на отсутствие в гидриде фазовых переходов первого рода при намагничивании. В этом случае расчет констант магнитной анизотропии может быть сделан при математической обработке кривой намагничивания $\sigma(H)$ вдоль оси [001] на основе уравнений, следующих из теории [9]. При намагничивании вдоль

Рис. 4. Экспериментальные кривые механических вращающих моментов *L* для монокристалла HoFe₁₁TiH в магнитном поле H = 13 kOe при различных температурах.

оси с выражение для полной энергии имеет вид

$$F = K_1 \sin^2 \theta + K_2 \sin^4 \theta + K_3 \sin^6 \theta - HM_S \cos \theta, \quad (10)$$

а уравнение равновесия $dF/d\theta = 0$ записывается соответственно

$$HM_{S} = -2\cos\theta(K_{1} + 2K_{2}\sin^{2}\theta + 3K_{3}\sin^{4}\theta).$$
(11)

При использовании нормализованных переменных $m = M/M_S = \cos \theta$ и $H_{A1} = 2K_1/M_S$ можно получить

$$H = -H_{A1}m\left(1 + 2x(1 - m^2) + 3y(1 - m^2)^2\right).$$
 (12)

В этом случае можно надежно определить только константу K_1 , поскольку теория [9] не учитывает анизотропию в базисной плоскости. Поле насыщения определяется из уравнения (12) при m = 1

$$H(m=1) = H_{A1} = 2K_1/M_s.$$
 (13)

Согласно нашим экспериментальным данным (рис. 2 и 3), магнитная анизотропия для монокристаллов НоFe₁₁Ti и НоFe₁₁TiН в базисной плоскости в области низких температур (Т < 120 К выражена довольно резко. Кривые намагничивания вдоль осей [100] и [110] в базисной плоскости отличаются друг от друга в области полей $H > H_{cr}$, кроме того, для этих кристаллографических направлений отличаются значения критических полей в HoFe₁₁Ti. Так, для направления [110] $H_{cr} = 21 \,\text{kOe}$, а для направления [100] $H_{cr} = 28 \,\text{kOe}$ при T = 4.2 К. Корректный учет анизотропии в базисной плоскости требует дальнейшего развития теории. Однако для оценки изменения константы магнитной анизотропии K₁ гидрида HoFe₁₁TiH можно использовать приведенные выше теоретические соотношения (13), поскольку полевая зависимость намагниченности вдоль оси легкого намагничивания не зависит от наличия магнитной анизотропии в базисной плоскости. Обработка кривых вдоль направлений [110] и [001] на основе формулы (11) приводит для гидрида при температуре $T = 4.2 \,\mathrm{K}$ к следующим значениям констант: $K_1 = -1.52 \cdot 10^7$, $(K_2 - K'_2) = -1.96 \cdot 10^7 \text{ u} (K_3 - K'_3) = 2.05 \cdot 10^7 \text{ erg/cm}^3.$ Учитывая полученные выше результаты, рассмотрим более детально рис. 3. Из рисунка видно, что ход кривых намагничивания в гидриде HoFe11TiH изменяется довольно значительно по сравнению с исходным составом НоFe₁₁Ti. При T = 300 K кривые имеют вид, характерный для одноосного состояния, а именно тетрагональная ось с является осью легкого намагничивания, в то время как оси [110] и [100] в базисной плоскости являются осями трудного намагничивания. При охлаждении ниже температуры 140 К кривые трансформируются, что связано с явлением спиновой переориентации. Направление осей легкого (ОЛН) и трудного намагничивания (ОТН) изменяется при дальнейшем понижении температуры (рис. 3), а именно при $T < 80 \,\mathrm{K}$ осью легкого намагничивания становится ось [110], лежащая в базисной плоскости. Следовательно, происходят кардинальные изменения характера магнитной анизотропии, которые можно объяснить образованием конусной структуры у гидрида HoFe₁₁TiH в районе низких температур. Как показано выше, гидрирование приводит к изменению не только величины, но и знака первой константы Отсутствие насыщения магнитной анизотропии *K*₁. на кривой $\sigma(H)$ вдоль направлений [110] и [100] при $T = 4.2 \, \text{K}$ обусловлено вращением магнитного момента из положения локальных минимумов энергии магнитной анизотропии к направлению магнитного поля.

Из кривых механических вращающих моментов $L(\theta)$, измеренных в широком температурном диапазоне, удалось определить для HoFe₁₁TiH температуру спиновой переориентации $T_{SR} = 140$ К. На рис. 4 представлены экспериментальные кривые $L(\theta)$, измеренные в плоскости (010) при различных температурах в поле $H = 13 \,\mathrm{kOe}$. При $T = 300 \,\mathrm{K}$ кристаллографические направления [001] (L = 0 и $\partial L / \partial \theta < 0$) и [110] (L = 0и $\partial L/\partial \theta > 0$) являются осями легкого и трудного намагничивания соответственно. При уменьшении температуры ниже $T_{SR} = 140 \, \text{K}$ происходит СПП, о чем свидетельствует появление дополнительных максимумов и минимумов вблизи направления [001]. Характер кривых $L(\theta)$ указывает на наличие фазового перехода второго рода: ОЛН — конус ОЛН при понижении температуры.

Таблица 3. Магнитные данные для монокристалла HoFe₁₁Ti и его гидрида

Состав	σ_S , emu/g		T_C, K	T_{SR}, \mathbf{K}	Направление легкого намагничивания		
	4.2 K	300 K			4.2 K	300 K	
HoFe ₁₁ Ti HoFe ₁₁ TiH	75.2 83.3	76.5 93	518 561		ось <i>с</i> Конус ОЛН	ОСЬ С ОСЬ С	

Рис. 5. Кривые намагничивания монокристаллов ErFe₁₁Ti и ErFe₁₁TiH вдоль кристаллографических направлений [001], [110] и [100] при разных температурах.

Состав	a, Å	c,Å	c/a	$V, Å^3$	$\Delta V/V, \%$	T_C, \mathbf{K}	σ_S , emu/g		T _{cp} K
							295 K	77 K	158,11
ErFe ₁₁ Ti ErFe ₁₁ TiH	8.480 8 507	4.775 4.781	0.563	343.4 346.0	- 0.8	515 563	96 99	81 86	50 41

Таблица 4. Структурные и магнитные свойства монокристалла ErFe₁₁Ti и его гидрида

Итак, анализ кривых намагничивания $\sigma(H)$ в области температур 4.2–300 К также свидетельствует, что при понижении температуры T < 140 К константа магнитной анизотропии K_1 изменяет знак ($K_1 > 0$ при $T > T_{SR}$ и $K_1 < 0$ при $T < T_{SR}$), и при T < 140 К осько легкого намагничивания становится направление [110]. В гидриде HoFe₁₁TiH отсутствуют пороговые поля и, что чрезвычайно важно, при T < 80 К направление [001] не является направление результаты указывают, что при охлаждении происходит очень сильное возрастание магнитной анизотропии в базисной плоскости (001), которая сравнивается и, по-видимому, даже превышает анизотропию в плоскости (110).

Таким образом, в результате проведения комплексного исследования, можно утверждать, что в гидриде HoFe₁₁TiH при охлаждении образца действительно происходит спин-переориентационный переход: ОЛН конус ОЛН. Основные магнитные характеристики (температура Кюри, намагниченность насыщения, температура СПП) HoFe₁₁Ti и его гидрида представлены в табл. 3.

2.3. Влияние гидрирования на магнитную анизотропию соединения $ErFe_{11}$ Ті. Магнитные свойства монокристаллов $ErFe_{11}$ Ті изучались ранее в полях до 12 kOe [17]. Магнитные свойства $ErFe_{11}$ Ті и его гидрида были изучены в полях до 240 kOe [18] на ориентированных в магнитном поле порошковых образцах. Цель нашего исследования — изучение магнитных свойств на монокристаллах $ErFe_{11}$ Ті и его гидрида $ErFe_{11}$ Ті в магнитных полях до 140 kOe в области низких температур от 4.2 до 100 К. В табл. 4 помещены полученные нами структурные и основные магнитные характеристики указанных выше образцов.

На рис. 5 представлены изотермы намагниченности монокристалла ErFe₁₁Ti для различных кристаллографических направлений. Видно, что осью легкого намагничивания является направление [001]. Вдоль осей [100] и [110] кривые намагничивания имеют резко нелинейный характер и характеризуются наличием на кривых $\sigma(H)$ в области полей $H \sim 10\,\mathrm{kOe}$ излома. Излом можно объяснить наличием проекции магнитного момента на базисную плоскость в отсутствие поля, т.е. существованием конуса ОЛН. При возрастании температуры кривая $\sigma(H)$ становится более линейной, что указывает на уменьшение проекции момента на базисную плоскость при нагревании. Данные, полученные ранее [17], указывают на схлопывание конуса легкого намагничивания при T > 60 К. Это утверждение не противоречит нашим экспериментальным результатам. Значения констант магнитной анизотропии, определенных по методу [9] для соединения $\text{ErFe}_{11}\text{Ti}$, составляют $K_1 = -4.6 \cdot 10^7$ и $K_2 = 18.4 \cdot 10^7$ erg/cm³.

Для более точного определения температуры СПП были проведены исследования температурной зависимости восприимчивости [19] как исходного состава ErFe₁₁Ti, так и его гидрида. Результаты измерений даны в табл. 4, из которой видно что гидрирование смещает температуру перехода в сторону более низких температур.

При гидрировании ErFe₁₁Ti магнитная анизотропия монокристалла увеличивается. Наиболее сильное влияние гидрирование оказывает на константу магнитной анизотропии K_1 , а именно $K_1 = -3.67 \cdot 10^7 \text{ erg/cm}^3$, в то время как $K_2 = 18.3 \cdot 10^7 \, \mathrm{erg/cm^3}$ изменяется незначительно. На кривых $\sigma(H)$ при $T = 4.2 \,\mathrm{K}$ отчетливо наблюдается наличие конуса осей легкого намагничивания, что проявляется в наличии спонтанной составляющей магнитного момента не только вдоль оси [001], но и вдоль осей [110] и [100]. Эти спонтанные моменты могут быть найдены экстраполяцией кривых $\sigma(H)$ к $H \rightarrow 0$. Угол раствора конуса можно определить как $2\theta_0 = 2 \operatorname{acrtg}(\sigma_{0\parallel}/\sigma_{0\perp})$, где значения $\sigma_{0\parallel}$ и $\sigma_{0\perp}$ суть значения спонтанных магнитных моментов, измеренные вдоль тетрагональной оси и в базисной плоскости. Для соединения ErFe₁₁Ti при $T = 4.2 \text{ K} \theta_0 = 22^\circ$ в результате гидрирования угол раствора конуса уменьшается и θ_0 становится равным 18°. По нашим магнитным данным можно сделать заключение, что в гидриде ErFe₁₁Ti возникновение конусной структуры происходит при более низкой температуре, а именно при $T \approx 40 \,\mathrm{K}$, что согласуется с измерениями магнитной восприимчивости, выполненными на этих же монокристаллах [19].

Рис. 6. Магнитные фазовые диаграммы соединений $RFe_{11}Ti$ (R = Lu, Ho, Er) и их гидридов. Заштрихованные области — конус ОЛН, назштрихованные — $M \parallel c$.

Таким образом, по результатам проведенных измерений построены магнитные фазовые диаграммы для монокристаллов RFe_{11} Ti, где R = Lu, Ho, Er (рис. 6). Видно, что соединения LuFe₁₁Ti и LuFe₁₁TiH являются одноосными магнетиками. Гидрирование приводит к усилению одноосной магнитной анизотропии железной подрешетки. В соединении НоFe₁₁Ti не наблюдается СПП и ось с является осью легкого намагничивания во всем исследованном интервале температур магнитного упорядочения, а в соединении ErFe₁₁Ti, наоборот, наблюдается СПП конус ОЛН-ОЛН при повышении температуры при *T_{SR}* = 50 К. Вычисленный при 4.2 К вклад в константу К₁ от редкоземельной подрешетки гольмия оказался положительным (K_{1 Ho} > 0), а от подрешетки эрбия, наоборот, отрицательным ($K_{1 \, {\rm Er}} < 0$). Согласно модели одноионной анизотропии для соединений RFe₁₁Ti в случае, когда R = Sm, Tm, Nd, Tb и Dy, знак K_{1R} совпадает со знаком фактора Стивенса α_J . Для исследованных нами соединений HoFe₁₁Ti и ErFe₁₁Ti вклады в K_{1R} от ионов Ho^{3+} $(lpha_J < 0)$ и Er^{3+} $(lpha_J > 0)$ противоположны по знаку фактора Стивенса. Это можно объяснить тем, что в потенциал кристаллического поля, действующего на редкоземельный ион в случае Но и Er, вносят большой вклад параметры магнитокристаллического взаимодействия порядка более высокого, чем второй, вследствие чего при низких температурах константа магнитной анизотропии K_2 превышает по абсолютной величине K_1 , а в случае ErFe₁₁Ti образуется конусная структура при T < 50 K. При гидрировании происходит усиление магнитной анизотропии подрешетки железа, однако еще большее влияние гидрирование оказывает на магнитную анизотропию подрешетки РЗМ, приводя к значительному изменению констант магнитной анизотропии К₁ и К₂, в том числе к смене знака константы K_1 в случае HoFe₁₁Ti, а также, по-видимому, к соответствующему изменению параметров магнитокристаллического взаимодействия. В результате гидрирования в соединении HoFe₁₁TiH при нагревании при температуре $T_{SR} = 140 \, \text{K}$ появляется СПП конус ОЛН-ОЛН. В соединении ErFe₁₁TiH гидрирование приводит к увеличению области одноосных состояний, и СПП сдвигается в сторону низких температур $(T_{SR} = 41 \text{ K}).$

Все эти изменения происходят на фоне возрастания атомного объема в среднем ~ 1.2% (хотя в зависимости от сорта РЗМ наблюдаются отклонения от этого значения) и могли бы быть связаны с изменением расстояния между атомами железа и РЗМ. Однако данные [20] о влиянии гидростатического давления на константы магнитной анизотропии для соединения HoFe₁₁Ti показывают, что величина $\partial K/\partial p$ близка к нулю. Поэтому можно сделать вывод, что изменение атомного объема и осевого отношения c/a не могут привести к наблюдаемым эффектам, таким как изменение знака констант магнитной анизотропии при гидрировании. Главным вкладом в этот эффект является вклад, обусловленный изменением кристаллического поля, а именно градиента электрического поля, в месте расположения РЗ иона при введении водорода в кристаллическую решетку. Эти поля воздействуют на анизотропную 4*f*-подоболочку РЗ иона, которая обладает отличным от нуля квадрупольным моментом, при наличии у ионов Но и Ег орбитального момента 4*f*-слоя $L \neq 0$. Известно, что атомы водорода размещаются в кристаллической решетке *R*Fe₁₁Ti (тетрагональная структура типа ThMn₁₂) в октаэдрических пустотах при ($x \leq 1$), расположенных на тетрагональной оси **с**, что индуцирует дополнительные электрические поля, действующие на РЗ ион.

Атомы внедрения модифицируют вклады в градиент электрического поля, обусловленные изменением взаимодействия электронной 4f-подоболочки с окружающими ионами, а также с валентными электронами $5s^25p^6$ и электронами проводимости [14,15].

Мы выражаем благодарность В.Н. Вербецкому и А.А. Саламовой за гидрирование монокристаллов.

Список литературы

- K.Yu. Guslienko, X.C. Kou, R. Grossinger. J. Magn. Magn. Mater. 150, 383 (1995).
- [2] B.-P. Hu, H.-S. Li, J.M.D. Coey. Phys. Rev. B41, 4, 2221 (1990).
- [3] A.V. Andreev, N.V. Kudrevatykh, S.M. Razgonyaev, E.N. Tarasov. Physica B183, 379 (1993).
- [4] C. Abadia, P.A. Algarabel, B. Garcia-Landa, A. del Moral, N.V. Kudrevatykh, P.E. Markin. J. Phys.: Condens. Matter. 10, 349 (1998).
- [5] И.С. Терешина, И.В. Телегина, К.П. Скоков. ФТТ 40, 4, 699 (1998).
- [6] I.S. Tereshina, S.A. Nikitin, T.I. Ivanov, K.P. Skokov. J. Alloys Comp. 275–277, 625 (1998).
- [7] С.А. Никитин, И.С. Терешина, В.Н. Вербецкий, А.А. Саламова. ФТТ 40, 2, 285 (1998).
- [8] O. Isnard, S. Miraglia, M. Guillot, D. Fruchart. J. Alloys Copm. 275–277, 637 (1998).
- [9] G. Asti, F. Bolzoni. J. Magn. Magn. Mater. 20, 29 (1980).
- [10] Y.-C. Yang, H. Sun, L.-S. Kong. J. Appl. Phys. 64, 10, 5968 (1988).
- [11] J.M.D. Coey, H. Sun, D.P.E. Hurley. J. Magn. Magn. Mater. 101, 301 (1991).
- [12] F. Bolzoni, J.P. Gavigan, D. Givord, H.S. Li, O. Moze, L. Pareti. J. Magn. Magn. Mater. 66, 158 (1987).
- [13] D. Fruchart, S. Miraglia. J. Appl. Phys. 69, 8, 5578 (1991).
- [14] R. Coehoorn, K.H.J. Buschow. J. Appl. Phys. 69, 8, 5590 (1991).
- [15] V.Yu. Irkhin, Yu.P. Irkhin. Phys. Rev. B57, 11, 2697 (1998).
- [16] А.И. Мицек, Н.П. Колмакова, Д.И. Сирота. ФММ 38, 1, 35 (1974).
- [17] A.V. Andreev, V. Sechovsky, N.V. Kudrevatykh, S.S. Sigaev, E.N. Tarasov. J. Less-Common Metals 144, L21 (1988).
- [18] O. Isnard, M.J. Guillot. J. Appl. Phys. 83, 11, 6730 (1998).
- [19] I.S. Tereshina, S.A. Nikitin, V.N. Verbetsky, A.A. Salamova, V.N. Nikiforov, L.A. Ponomarenko. VI International Conference "Hydrogen materials science and chemistry of metal hydrides". Abstracts book. Katsively, Yalta, Ukraine (1999). P. 144.
- [20] Z. Arnold, J. Kamarad, O. Mikulina, C. Garcia-Landa, C. Abadia, M.R. Ibarra, N.V. Kudrevatykh. J. Magn. Magn. Mater. 196–197, 748 (1999).