Вклад дислокационных ядер в рассеяние рентгеновских лучей кристаллами с дислокациями

© А.И. Дехтяр

Институт металлофизики Академии наук Украины, 03680 Киев, Украина E-mail: dekhtyar@imp.kiev.ua

(Поступила в Редакцию в окончательном виде 10 октября 2000 г.)

С использованием решеточных функций Грина для описания статических смещений атомов оценен вклад дислокационных ядер в уширение узла обратной решетки, вызываемого дислокациями в кристалле. Показано, что этот вклад пропорционален экспериментально определяемой рентгеновским методом величине угла интегральной разориентировки дислокационной субструктуры и зависит от некоторых фундаментальных характеристик внутриатомного строения и конденсированного состояния.

Работа выполнена при финансовой поддержке Украинского научно-технологического центра (грант № 050).

В [1] установлено, что форма кривой распределения интенсивности рассеяния рентгеновских лучей в азимутальном направлении изменяется с ростом угла интегральной разориентировки δ , последовательно принимая вид гауссовского, лоренцовского и равномерного распределений. Этот угол пропорционален ширине распределения δq_{\perp} , которая соответствует размеру узла обратной решетки в азимутальном направлении. Наиболее простое соотношение для δ при равномерном распределении получается в случае изогнутого кристалла, содержащего избыток дислокаций одного знака. В теории дифракции рентгеновских лучей неидеальными кристаллами для этого случая [2] это соотношение имеет вид

$$\delta \sim \delta q_{\perp} \sim a_L b Q L |\Delta n_{\alpha}|, \tag{1}$$

где a_L — геометрический фактор, b — модуль вектора Бюргерса, Q — модуль дифракционного вектора, L — размер кристалла (или размер облучаемой области), Δn_{α} — избыточная плотность дислокаций одного знака.

Основной вклад в экспериментально определенную интенсивность рассеяния рентгеновских лучей вносят области кристалла, удаленные от дислокаций [2]. Выражение (1) подтверждает этот закон. Однако в деформационных процессах при упрочнении существенную роль играют искаженные области кристалла, расположенные непосредственно вблизи дислокационных линий. Эти области вносят основной вклад в силы контактного взаимодействия между дислокациями, между дислокациями и точечными дефектами. Особенно это касается высокотемпературной ползучести, где такие взаимодействия определяют скорость деформации. Это тем более интересно, поскольку относительно недавно установлено фундаментальное соотношение между скоростью ползучести $\dot{\varepsilon}$ и экспериментально определенным углом интегральной разориентировки субструктуры δ в виде $\dot{\varepsilon} \sim \delta^{-2}$ [3].

В связи с этим возникает необходимость определить вклад областей кристалла вблизи дислокаций в рассе-

яние рентгеновских лучей, несмотря на то что этот вклад будет несомненно на несколько порядков величины меньше вклада областей, удаленных от дислокаций. Термин "вблизи дислокаций" означает, что закон спадения статических смещений и с расстоянием r от центра дефекта в этой области должен отличаться от закона *u* ~ 1/*r*, характерного для больших расстояний от дислокаций [2]. В то же время он должен отличаться и от закона $u \sim 1/r^2$, характерного для точечных дефектов, который, вероятно, справедлив для дислокаций на расстоянии порядка 0-1b от линии дислокации [2]. Поскольку закон спадения смещений с расстоянием $u \sim 1/r^{3/2}$ определен в [2] как предельный для дефектов второго класса, которыми являются дислокации, то можно полагать, что этот закон справедлив вблизи дислокационных линий (на расстоянии порядка радиуса ядра дислокации r_0 , который изменяется от b до нескольких b).

К статическим смещениями в этой области применимо выражение с использованием решеточных функций Грина [2]

$$u_{si} = \sum_{s} \tilde{G}_{ss'ij} W_{s'tj}, \qquad (2)$$

где $\tilde{G}_{ss'ij}$ — функция Грина для идеального кристалла с одним атомом в ячейке, которая равна *i*-й компоненте смещения *s*-го атома под действием единичной внешней силы, приложенной к атому *s'* и направленной вдоль оси *j*. И хотя дислокации приводят к изменению силовых постоянных кристалла, можно ограничиться нулевым приближением, поскольку эти изменения достаточно малы.

Тогда дефект с центром в точке t действует на атомы кристалла s' с силами $W_{s'tj}$. Рассматривая эти силы как внешние и учитывая определение $\tilde{G}_{ss'ij}$, получаем, что смещение *s*-го атома, вызванное дефектом, сводится к сумме смещений, создаваемых полем сил, действующих на атомы s' вокруг дефекта, и описывается выражением (2). В одноатомных кристаллах функцию Грина можно представить в виде суммы по нормальным координатам [2]

$$\tilde{G}_{ss'ij} = \frac{1}{N} \sum_{\mathbf{k}} \sum_{p=1}^{3} \frac{\mathbf{e}_{\mathbf{k}pi} \mathbf{e}_{\mathbf{k}pj}}{M \omega_{\mathbf{k}p}^2} \exp(i\mathbf{k}\mathbf{R}_{ss'}), \qquad (3)$$

где N — число элементарных ячеек, $\mathbf{e}_{\mathbf{k}p}$ — поляризационные векторы, $\omega_{\mathbf{k}p}$ — частота нормальных колебаний, M — масса атома, $\mathbf{R}_{ss'} = \mathbf{R}_{s'} - \mathbf{R}_s$.

В приближении к проблеме рассеяния от областей кристалла, расположенных вблизи дислокаций, необходимо положить, что атомы *s* и *s'* расположены в области, ограниченной расстоянием r_0 от линии дислокации. Выражение для интенсивности рассеяния в этих областях примет тогда вид [2]

$$I_{1} = f^{2} \sum_{ss'(r_{0})} \exp(i\mathbf{q}\,\boldsymbol{\rho}) \exp[-T_{1}(\mathbf{R}_{s}^{0},\boldsymbol{\rho})],$$
$$T_{1} = \sum_{\alpha} c_{\alpha} \sum_{t} [1 - \exp(i\mathbf{Q}\,\mathbf{u}_{ss't\alpha})], \qquad (4)$$

где f^2 — структурная амплитуда кристалла, не содержащего дефекты, $c_{\alpha} = S_0 n_{\alpha}$, S_0 — площадь, приходящаяся на одно возможное положение дислокации в перпендикулярной ей плоскости, n_{α} — плотность дислокаций системы α , $\rho = \mathbf{R}_{ss'}^0 = \mathbf{R}_s^0 - \mathbf{R}_{s'}^0$ (\mathbf{R}_s^0 соответствует кристаллу без дефектов), $\mathbf{u}_{ss't\alpha}$ — разность смещений: $\mathbf{u}_{ss't\alpha} = \mathbf{u}_{st\alpha} - \mathbf{u}_{s't\alpha}$.

Для рассматриваемого случая изогнутого кристалла $S_0 = \pi r_0^2$ и $c_\alpha = \pi r_0^2 \Delta n_\alpha$, где Δn_α — избыточная плотность дислокаций одного знака. Величина T_1 является комплексной.

$$T_1 = T_1' + iT_1''. (5)$$

Здесь мнимая часть (T_1'') описывает распределение интенсивности в азимутальном направлении. Тогда, согласно (4),

$$T_1'' = -\sum_{\alpha} \pi r_0^2 \Delta n_{\alpha} \sum_t \sin(\mathbf{Q} \, \mathbf{u}_{ss't\alpha}). \tag{6}$$

В пределах дислокационных ядер (радиус которых не превышает одного десятка *b*) можно считать, что разности смещений $\mathbf{u}_{ss't\alpha}$ достаточно малы. Тогда $\sin(\mathbf{Q} \, \mathbf{u}_{ss't\alpha}) \approx \mathbf{Q} \, \mathbf{u}_{ss't\alpha}$, и последнее можно разложить по степеням $\mathbf{Q} \, \mathbf{u}_{st\alpha}$ и ограничиться первым членом разложения: $\mathbf{Q} \, \mathbf{u}_{ss't\alpha} \approx \mathbf{R}_{ss'}^0 \mathbf{q}_1 \frac{\partial}{\partial R_s^0} (\mathbf{Q} \, \mathbf{u}_{st\alpha})$, где \mathbf{q}_1 — единичный дифракционный вектор. При выборе отражений, для которых \mathbf{Q} приблизительно параллельно $\mathbf{u}_{st\alpha}$, имеем

$$\mathbf{Q}\,\mathbf{u}_{ss't\alpha} \approx Q\mathbf{R}_{ss'}^0 q_1 \frac{\partial}{\partial R_s^0} u_{st\alpha}.\tag{7}$$

Для упрощения будем проводить расчеты для случая одной системы дислокаций. Тогда получаем

$$T_1'' = -\pi r_0^2 \Delta n Q \mathbf{R}_{ss'}^0 \mathbf{q}_1 \frac{\partial}{\partial R_s^0} \sum_t u_{st}, \qquad (8)$$

для краевых дислокаций [2] эта величина определяется выражением

$$T_1'' = R_s^0 \mathbf{A} \mathbf{R}_{ss'}^0, \qquad (9)$$

где А — вектор амплитуды рассеяния.

Из результатов теории следует, что интенсивность принимает заметную величину при тех значениях **q**, для которых

$$\mathbf{q} - \mathbf{A} R_s^0 = \mathbf{0}. \tag{10}$$

Вклад в азимутальную ширину распределения интенсивности рассеяния, обусловленный дислокационными ядрами, представляет собой вариацию величины **q** в ядрах. Поскольку смещения u_{st} зависят от расстояния R_s^0 от центра дислокации, то из (8)–(10) получаем

$$\delta q'_{\perp} = \frac{dq_{\perp}}{du_{st}} \delta u_{st} = -\pi r_0^2 \Delta n Q \frac{\partial}{\partial R_s^0} \sum_t \frac{du_{st}}{dR_s^0} \delta R_s^0.$$
(11)

Находя из (2) и (3) выражение для u_{st} , можно записать вклад дислокационных ядер $\delta q'_{\perp}$ в общее уширение в виде

$$dq'_{\perp} = -\frac{\pi}{N} \Delta n Q r_0^2 \frac{\partial^2}{\partial (R_s^0)^2}$$
$$\times \sum_t \sum_{s'} \sum_{\mathbf{k}} \sum_{p=1}^3 \frac{\mathbf{e}_{\mathbf{k}pi} \, \mathbf{e}_{\mathbf{k}pj}}{M \omega_{kp}^2} \exp(i\mathbf{k} \, \mathbf{R}_{ss'}^0) \, W_{s'tj} \, \delta R_s^0, \quad (12)$$

где максимальное значение $R_s^0 = r_0/b$.

Во-первых, заметим, что поляризационные векторы из соображения сохранения размерности должны входить в виде безразмерных величин e/b.

Во-вторых, в выражении (12) только $\exp(i\mathbf{k} \mathbf{R}_{ss'}^0) W_{s'tj}$ зависит от R_s^0 . Эту зависимость, как было показана выше, можно представить в виде

$$\exp(i\mathbf{k}\,\mathbf{R}_{ss'}^0)\,W_{s'tj}\cong C_1 R_s^{-3/2},$$
 (13)

где C_1 — некоторая постоянная, не зависящая от R_s^0 . В-третьих, $\delta R_s^0 = r_0/b$.

В (12) можно провести простое суммирование. Этому благоприятствует малый размер дислокационных ядер и дискретный характер суммируемых величин. При суммировании предполагается, что переменная величина u_{st} заменяется некоторым средним значением, а затем вводится закон изменения u_{st} с расстоянием. В отличие от точного интегрирования можно ожидать ошибку не более 100%.

Для возможности суммирования по t будем рассматривать краевую дислокацию как набор точечных дефектов, каждый из которых имеет центром точку t. Каждая такая точка t отстоит от соседней на расстояние порядка b(точнее на расстояние между атомами в направлении линии дислокации). Смещения же атомов из своих узлов происходят в основном в плоскости, перпендикулярной линии дислокаций. Поэтому различие между одиночным объемным точечным дефектом и "точечным" дефектом из дислокационного набора состоит в том, что "дефект" в краевой дислокации вызывает смещение атомов только в перпендикулярной плоскости. Суммарный эффект для дислокации будет определяться количеством "точечных дефектов", приходящихся на длину дислокации, которое в рамках данного приближения будет равно L/b.

Из всего сказанного выше следует, что суммирование по s' определяет количество смещенных атомов для каждого "точечного дефекта". Тогда суммирование по s' даст множитель $\pi N(r_0/b)^2$.

Суммирование по **k** необходимо проводить по особым точкам обратной решетки с учетом весовых вкладов. Используя результаты работы [4], находим, что для ОЦК и ГЦК кристаллических структур множитель, связанный с суммированием по **k**, равен 4.59 и 4.41 соответственно. Этот результат ненамного отличается от значения сферического приближения: $4\pi/3 \cong 4.19$.

Суммирование по *р* для изотропного кристалла дает множитель 3.

Значение векторов поляризации можно оценить, исходя из диэлектрических свойств атома. Формула для вектора поляризации, согласно [5], имеет вид

$$\mathbf{e} = \frac{4\pi\varepsilon_{\nu}R_a^3\mathbf{E}}{Z|e|},\tag{14}$$

где ε_{ν} — диэлектрическая постоянная вакуума, R_a — атомный радиус, **E** — вектор напряженности внешнего электрического поля, Z — общее число электронов в атоме, |e| — заряд электрона.

Величина $\mathbf{E} = \mathbf{F}/Z|e|$ в случае дислокации описывает электрическое поле, возникшее в результате смещения атомов. Это выражение можно переписать в виде $\mathbf{E} = \mathbf{F}/Z|e| = W_c/Z|e|\mathbf{e}$. Здесь W_c — энергия дислокационного ядра, приходящаяся на один атом. Для упрощения оценки можно положить, что *i*-я компонента вектора поляризации совпадает со значением вектора поляризации в направлении *j*: $e_i = e_j = e$.

Частоту нормальных колебаний можно определить следующим образом. Вблизи дислокационной линии смещения, вероятно, велики настолько, что межатомные расстояния становятся близкими к тем, которые характерны для жидкого или аморфного состояний. Это следует из следующих фактов. Во-первых, к дислокационному ядру неприменима линейная теория упругости и область ядра лучше всего представляется в виде сингулярности [6]. Во-вторых, скорость диффузии вдоль дислокационного ядра на 4-5 порядков величины больше, чем в объеме кристаллической решетки [7], что приближается к значениям скоростей диффузии в жидкости. Поэтому естественно предположить, что в дислокационном ядре максимально возможные частоты нормальных колебаний $\omega_{\mathbf{k}p}$ уже соответствуют не дебаевской температуре, как это имеет место для идеальной решетки, а температуре плавления T_m , т.е. $\hbar \omega_{\mathbf{k}p} = kT_m$.

Энергия ядра дислокации, приходящаяся на один атом, равна [6]

$$W_c = \frac{Gb^2}{4\pi(1-\nu)},\tag{15}$$

где *G* — модуль сдвига при температуре измерения угла разориентировки, *ν* — коэффициент Пуассона.

Величину C_1 можно найти из условия (13) при $R_{s}^0 = r_0/b = 1$. Положим $\exp(i\mathbf{k} \mathbf{R}_{ss'}^0) \cong 1$. Это предположение оправдано, поскольку самые заметные смещения, приводящие к размытию рефлексов, в случае краевых дислокаций можно регистрировать, когда волновой вектор \mathbf{k} перпендикулярен вектору $R_{ss'}^0$. Тогда C_1 определяется только силами межатомного взаимодействия $W_{s'tj}$. Поскольку $R_s^0 = r_0/b = 1$, эти силы можно рассчитать из принципа парного взаимодействия, выражение для энергии которого $V_{s't}$ удобнее всего представить через псевдопотенциалы ионов $w_0(q)$ при $q = 2k'_F$ [8]

$$G_1 = W_{s't} = \frac{V_{s't}}{b} = \frac{18\pi z_e^2 [w_0(2k'_F)]^2}{bk'_F^2} \frac{\cos(2k'_F b)}{(2k'_F b)^3}.$$
 (16)

Здесь z_e — число эффективно связующих электронов на атом [9], m — масса электрона, k'_F — радиус псевдосферы Ферми, заполненной почти свободными, эффективно связующими электронами z_e [9]

$$k'_F = \sqrt[3]{\frac{3\pi^2 z_e}{\Omega_0}} \cong \frac{1}{b} \sqrt[3]{18\pi z_e},$$
 (17)

где Ω_0 — атомный объем. Величина $w_0(2k'_F)$ определяется следующим образом [8]:

$$w_0(2k'_F) = -\frac{C_2\pi z_e}{\Omega_0 k'_F^2},$$
(18)

где C_2 — величина, равная отношению n^3/Z , n — главное квантовое число почти свободных, эффективно связующих электронов. Последнее будет показано в работе, которая посвящена вопросам электронной структуры и межатомного взаимодействия в переходных металлах.

Значение $\cos(2k'_F b)$ отрицательно и в большинстве случаев приближается к -1. Учитывая, что расчет (16) производился в атомных единицах, и подставляя значения k'_F и $w_0(2k'_F)$, выражение (16) можно записать в виде

$$C_1 = -2.43 \cdot 10^{-19} \frac{n^6 z_e}{\pi^2 Z^2 b}.$$
 (19)

Подставляя (13) в выражение (12), используя результаты суммирования, проведя дифференцирование по R_s^0 и заменяя R_s^0 на r_0/b в (13), а также проведя подстановки всех определенных выше величин, получаем выражение для $\delta q'_{\perp}$ в виде

$$\delta q'_{\perp} = 4.56 \cdot 10^{-19} \frac{\pi \varepsilon_{\nu} \hbar^2}{e^2 k^2} \Delta n L Q \left(\frac{r_0}{b}\right)^{3/2} \frac{z_e n^6 G b^3}{(1-\nu) Z^4 M T_m^2}.$$
(20)

Отношение размытия узла обратной решетки, обусловленного вкладом дислокационных ядер, к экспериментально наблюдаемому размытию, обусловленному дислокациями в кристалле, рассчитанное по формуле (21) для ряда металлов

Металл	$\delta q_{\perp}'/\delta q_{\perp}$
Cu	$1.1 \cdot 10^{-4}$
Ni	$3.0 \cdot 10^{-5}$
Ag	$1.4 \cdot 10^{-4}$
Mo	$2.6 \cdot 10^{-5}$
W	$3.4 \cdot 10^{-5}$
	$5.1 \cdot 10^{-6}$
1a	$5.0 \cdot 10^{-4}$

Подставляя (1) в (20) и учитывая численные значения фундаментальных констант, можно получить соотношение между $\delta q'_{\perp}$ и измеряемой экспериментально δq_{\perp}

$$\delta q'_{\perp} = 2.88 \cdot 10^{-14} \frac{z_e n^6}{Z^4 M} \frac{G b^2}{a_L (1-\nu) T_m^2} \left(\frac{r_0}{b}\right)^{3/2} \delta q_{\perp}.$$
 (21)

Подставляя численные значения всех величин для конкретных кристаллов (например, для металлов из [10], для r_0/b из [9], для z_e из [11]) в (21), получаем, что значения $\delta q'_{\perp}$ действительно составляют некоторую малую долю от экспериментально определенного размытия узла обратной решетки δq_{\perp} (см. таблицу).

Подытоживая полученные результаты, можно сделать вывод, что, во-первых, вклад ядер дислокаций в угол интегральной разориентировки субструктуры зависит от размера дислокационного ядра, или, что то же самое, от ширины расщепления дислокаций, поскольку между ними существует пропорциональность [6]. Во-вторых, этот вклад зависит от фундаментальных свойств металлов в конденсированном состоянии (температура плавления, упругие константы, параметр решетки, концентрация эффективно связующих электронов), а также от индивидуальных особенностей атома (масса атома, главное квантовое число внешних электронов, определяющих межатомное взаимодействие, количество электронов ионного остова).

Список литературы

- [1] Л.В. Демченко, А.И. Дехтяр, В.А. Кононенко, К.П. Рябошапка. Металлофизика **11**, *4*, 84 (1989).
- [2] М.А. Кривоглаз. Дифракция рентгеновских лучей и нейтронов в неидеальных кристаллах. Наук. думка, Киев (1983). 408 с.
- [3] A.I. Dekhtyar, L.V. Demchenko. In: Tungsten, Refractory Metals and Alloys 4 Proceedings of the Fourth International Conference of Tungsten, Refractory Metals and Alloys / Ed. by A. Bose, R.J. Dowding. Metal Powder Industry Federation, Princeton, NJ (1998). P. 309.
- [4] R.A. Evarestov, V.P. Smirnov. Phys. Stat. Sol. B119, 9, 9 (1983).
- [5] Ч. Уэрт, Р. Томсон. Физика твердого тела. Мир, М. (1969).
 С. 399.

- [6] Дж. Хирт, И. Лоте. Теория дислокаций. Атомиздат, М. (1972). 600 с.
- [7] Р.Ф. Баллуффи. В кн.: Новости физики твердого тела. В. 2. Термически активируемые процессы в кристаллах. Мир, М. (1973). С. 42.
- [8] У. Харрисон. Псевдопотенциалы в теории металлов. Мир, М. (1968). 366 с.
- [9] А.И. Дехтяр, Г.Я. Козырский, В.А. Кононенко. ФТТ 20, 4 964 (1978).
- [10] Структура и свойства металлов и сплавов. Справочник. Наук. думка, Киев (1987).
- [11] B. Rosenfeld. Acta Physica Polonica **31**, *1*, 197 (1967).