Параметры сверхтонких взаимодействий в сплаве Лавеса ScFe₂ с гескагональной структурой MgZn₂

© В.С. Покатилов

Московский государственный институт радиотехники, электроники и автоматики, 117454 Москва, Россия

E-mail: pocat@cc.nifhi.ac.ru

(Поступила в Редакцию 30 марта 2001 г. В окончательной редакции 24 апреля 2001 г.)

Измерены сверхтонкие поля, коэффициенты усиления и квадрупольное расщепление на ядрах ⁴⁵Sc в сплавах ScFe₂, Sc_{0.95}Fe_{2.05} и ScFe_{1.97}Al_{0.03} при комнатной температуре и 77 К методом ядерного магнитного резонанса (ЯМР). Изучены особенности спектров ЯМР и определены сдвиги сверхтонких полей на ядрах ⁴⁵Sc в рассматриваемых сплавах при появлении атомов Fe на местах атомов Sc и атомов Al на местах атомов Fe в ближайших координационных сферах атомов Sc.

Работа выполнена при поддержке фонда "Российские университеты" (грант № 990926).

Интерметаллические соединения Лавеса стехиометрического состава RFe₂ (где R — атомы Sc, Y, Zr и другие 3d-, 4d- или 5d-атомы) в последние годы интенсивно исследуются. Эти сплавы представляют значительный интерес как с точки зрения природы явлений, обусловливающих их магнитные свойства (например, существование магнитных моментов и величины этих моментов на атомах R), так и широкой области их практических применений. Обычно эти сплавы синтезируются в одном из кристаллических состояний: кубическом MgCu₂ (C15) и гексагональных MgNi₂ (C36) и MgZn₂ (C14) [1]. Соединения ScFe₂ обладают полиформизмом и могут быть в трех указанных выше кристаллических состояния [1]. Магнитные свойства сплавов ScFe2 изучены мало по сравнению со сплавами RFe₂ (R = Y, Zr, Nb или резкоземельный атом). Имеются некоторые данные о параметрах сверхтонких взаимодействий (CB) для ядер ⁵⁷Fe, измеренных методом эффекта Мессбауэра в гексагональном сплаве ScFe₂ со структурой типа C14 [2,3], для ядер ⁵⁷Fe и ⁴⁵Sc, измеренных методом ядерного магнитного резонанса (ЯМР) в гексагональном сплаве ScFe₂ со структурой СЗб [4-6] и кубическом сплаве со структурой С15 [4-6]. В спектрах ЯМР этих сплавов Лавеса [4-6] наблюдались дополнительные неразрешенные пики и особенности, природа которых не ясна. Поскольку трудно получить однофазные сплавы этого соединения, присутствие других фаз не позволяет рассматривать некоторые тонкие эффекты в спектрах, обусловленные, например, незначительными отклонениями от стехиометрии и условиями получения образцов исследуемых сплавов, а также влиянием примесных s-, p- или d-атомов на параметры СВ.

В данной работе сообщается о результатах измерения параметров ЯМР на ядрах 45 Sc в однофазных интерметаллических сплавах ScFe₂, Sc_{0.95}Fe_{2.05} и ScFe_{1.97}Al_{0.03} с гексагональной структурой *C*14.

1. Образцы и методика

Образны сплавов Лавеса ScFe₂, Sc_{0.95}Fe_{2.05} и ScFe_{1 97}Al_{0 03} были выплавлены из металлов высокой чистоты в дуговой печи в атмосфере высокочистого аргона. Слитки размельчались и переплавлялись несколько раз. Слитки сплавов ScFe₂ и ScFe_{1 97}Al_{0 03} дополнительно переплавлялись при давлении ~ 7 GPa, а слиток сплава Sc_{0.95}Fe_{2.05} отжигался при температуре 1273 К в течение 48 часов и закаливался в воде, чтобы исключить полиморфные превращения. Рентгенографические измерения порошковых образцов показали, что образцы были однофазными и имели гексагональную структуру MgZn₂. Для образцов изученных сплавов периоды решетки равны: a = 4.964 и c = 8.106 Å.

Измерения спектров ЯМР на ядрах ⁴⁵Sc проводились методом импульсного ЯМР при температурах 293 и 77 К. Проводилась калибровка амплитуды высокочастотных импульсов, возбуждающих эхо, и амплитуды сигналов эха для учета влияния коэффициентов усиления в передающих и приемных блоках спектрометра, а также диодного режима измерения на каждой частоте измерений. В процессе измерения амплитуда высокочастотных импульсов поддерживалась постоянной, близкой к максимуму эхо-сигнала во всем диапазоне измеряемых частот. При этом условии истинный спектр ЯМР, соответствующий распределению сверхтонких полей (резонансных частот), получается нормировкой измеренного спектра ЯМР на куб частоты измерения f^3 [7]. При измерении спектров ЯМР на ядрах ⁴⁵Sc в образцах сплавов на основе ScFe₂ длительность радиоимпульсов была $1 \, \mu s$, а на ядрах 57 Fe в железе — $10\,\mu$ s. Была также измерена величина высокочастотного магнитного поля *h*₁ в резонансной катушке, которая использовалась при измерении спектров ЯМР на ядрах ⁴⁵Sc, при помощи протонного резонанса в соответствующих внешних магнитных полях в водном растворе CuSO₄ и установки 90° и 180° высокочастотных импульсов.

Puc. 1. Спектры ЯМР на ядрах ⁴⁵Sc в исследуемых образцах (кружки и квадраты — экспериментальные точки, штриховые линии — компоненты разложения спектра на гауссовские линии, сплошные линии — суммарный спектр ЯМР от гауссовских компонент): $a - \text{ScFe}_2$ при комнатной температуре, $b - \text{ScFe}_2$ при 77 K (1) и внешнем магнитном поле B = 5 kOe (2), $c - \text{Sc}_{0.95}\text{Fe}_{2.05}$ при 77 K, $d - \text{ScFe}_{1.97}\text{Al}_{0.03}$ при 77 K.

2. Результаты и их обсуждение

На рис. 1 представлены спектры ЯМР на ядрах ⁴⁵Sc в исследуемых образцах. Спектр ЯМР сплава ScFe₂ (рис. 1, *a*), измеренный при комнатной температуре, имеет максимум при 63.0 MHz, что соответствует сверхтонкому полю $B_1 = 6.09$ Т. При 77 К максимуму спектра в этом сплаве соответствует частота 73.68 MHz и соответственно $B_1 = 7.125$ Т (рис. 1, *b*). Со стороны высоких частот в спектре этого сплава наблюдаются неразрешенные линии. В образце сплава Sc_{0.95}Fe_{2.05}, имеющем избыток атомов Fe интенсивность этих дополнительных линий возрастает (рис. 1, *c*). Спектр ЯМР на ядрах ⁴⁵Sc сплава ScFe₂ смещается в сторону меньших частот во внешнем магнитном поле 5 kOe, следовательно, сверхтонкое поле на ядрах ⁴⁵Sc отрицательно (рис. 1, *b*).

В структуре MgZn₂ атомы Sc имеют одно кристаллографическое состояние и окружены 12 атомами Fe (12Fe) и 4 атомами Sc (4Sc), которые образуют шестнадцативершинник Лавеса вокруг атома скандия [8]. Атомы Fe находятся в двух неэквивалентных кристаллографических состояниях Fe₁ и Fe₂, и отношение чисел состояний в каждом из этих состояний равно 3:1. Атомы Sc имеют в первой координатной сфере (KC) 12Fe (9Fe₂ и 3Fe₁) и 4Sc во второй КС; далее 15Fe (12Fe₁ + 3Fe₂) в третьей КС, 13Sc в четвертой КС, 9Fe $(6Fe_1 + 3Fe_2)$ в пятой КС и (9Sc + 3Fe₂) в шестой КС. Хотя образец сплава ScFe₂ со структурой MgZn₂ приготавливался как стехиометрический (с учетом выгорания элементов при плавлении), однако он получался как сплав состава $Sc_{1-x}Fe_{2(1+x)}$, x — примесь атомов Fe. В [9] в образцах сплава ScFe₂ (MgZn₂) было измерено сопротивление. Эти результаты указывали на дополнительное содержание атомов Fe в стехиометрических по составу приготовленных образцах. Данные ЯМР на ядрах ⁴⁵Sc в сплавах ScFe2 и Sc0.95 Fe2.05 показывают, что дополнительные пики в этих спектрах могут быть обусловлены появлением избыточных атомов Fe на состояниях атомов Sc в их второй, четвертой и шестой КС. Можно предположить, что пик при 77.86 MHz (в спектре ЯМР сплава Sc_{0.95}Fe_{2.05}) обусловлен замещением одного атома Sc на один атом Fe, а пик при 82.57 MHz — двух атомов Sc двумя атомами Fe во второй КC и пик при 75.27 MHz замещением одного атома Sc на один атом Fe в четвертой КС атомов Sc. Похожая ситуация наблюдается и в образцах сплава ZrFe₂ [10]. Если предположить, что избыточные атомы Fe распределяются во второй КС атомов Se случайно (при 77.62 MHz), можно оценить количество таких атомов Fe в образце ScFe₂. Используя биномиальное распределение и рассматривая отношение вероятностей того, что атом Sc имеет 0 и 1 атом Fe во второй KC, получим

$$\frac{P_4^0}{P_4^1} = \frac{1-x}{4x},\tag{1}$$

где x — концентрация избыточных атомов Fe. На рис. 1, *b* приведено разложение экспериментального спектра сплава ScFe₂ (MgZn₂) на линии гауссовской формы (использованы пакеты программы "ORIGIN"). Сплошная линия — суммарная линия разложения спектра. Разложение спектра на компоненты дало пики при 73.68, 75.45 и 77.62 MHz. Беря отношение площадей пиков при 73.68 (конфигурация ближайшего окружения атома Sc — {12Fe+4Sc}) и 77.62 MHz {12Fe+(1Fe+3Sc)} и сравнивая его с формулой (1), получим x = 0.046. Появление одного атома Fe на местах атомов Sc во второй KC атома Sc сдвигает резонансную частоту на ядрах ⁴⁵Sc на (+3.98 MHz) или (+0.386 T).

На рис. 1, d приводится спектр ЯМР на ядрах ⁴⁵Sc Кроме основного пика при в сплаве ScFe_{1.97}Al_{0.03}. ~ 73.2 MHz и неразрешенного пика со стороны высоких частот появились два дополнительных пика со стороны низких частот. Эти два низкочастотных пика обусловлены появлением атомов Al в первой КС атомов Sc, причем пик с максимумом при ~ 66.8 MHz обусловлен появлением одного атома Al, а пик при ~ 61.1 MHz — появлением двух атомов Al на местах атомов Fe в первой КС атома Sc. Спектр ЯМР был разложен на компоненты и результат разложения показан на рис. 1, *d*. Сплошная линия на этом рисунке это суммарная линия разложения спектра. Максимумы этих пиков (компонентов спектра) и вероятные конфигурации ближайшего окружения, соответствующие этим пикам, следующие: 73.19 MHz {12Fe + 4Sc}, 76.80 MHz $\{12Fe + (1Fe + 3Sc)\}, 66.76 \text{ MHz} \{(11Fe + 1AI) + 4Sc\},\$ 61.10 MHz {(10Fe + 2Al) + 4Sc} и 70.41 MHz (вероятно, обусловлен появлением атомов А1 в третьей КС атома Sc). Замещение атома Fe на атом Al в первой КС атома Sc приводит к сдвигу резонансной частоты на (-6.4 MHz или -0.619 T). Атом Al не имеет магнитного момента *d*-типа, поэтому разница резонансных частот для атомов Sc с 12Fe и 11Fe ближайшими соседями дает влияние магнитного момента одного атома Fe на резонансную частоту (сверхтонкое поле) на ядрах ⁴⁵Sc.

На рис. 2 представлены зависимости амплитуды эхосигнала A_e от величины высокочастотного магнитного поля h_1 , действующего на ядра ⁴⁵Sc в исследуемых сплавах при 77 К. Для сравнения на рис. 2 также приведена зависимость $A_e(h_1)$ для ядер ⁵⁷Fe в порошковых образцах железа, обогащенных изотопом ⁵⁷Fe, измеренная в этой работе при 77 К на частоте 46.54 MHz. Оказалось, что максимумам кривых $A_e(h_1)$ соответствуют различные значения амплитуд высокочастотного магнитного поля

Рис. 2. Зависимость амплитуды эхо-сигнала A_e от амплитуды высокочастотного магнитного поля h_1 на ядрах ⁴⁵Sc для сплавов ScFe₂ (1), Sc_{0.95}Fe_{2.05} (2), ScFe_{1.97}Al_{0.03} (3) и на ядрах ⁵⁷Fe в порошке железа (4).

 h_1^m . В рассматриваемых сплавах все значения h_1^m меньше, чем в образце чистого Fe. В магнитоупорядоченных веществах зависимость $A_e(h_1)$ обусловлена распределением коэффициентов усиления η в доменной границе. Подробно этот эффект был рассмотрен в [11] для модели доменной стенки в виде колеблющейся мембраны, закрепленной по периметру, где также получено аналитическое выражение для зависимости амплитуды эхо-сигнала от $h_1 A_e^{\text{theor}}(h_1)$. Распределение коэффициентов усиления в доменной границе может быть представлено в виде [11]

$$\eta(x) = \eta_0 \cdot \operatorname{sech}(x) \cdot (1 - r^2) \cdot d_m, \qquad (2)$$

где η_0 — максимальный коэффициент усиления, реализующийся на ядрах, находящихся в центре доменной границы, x — положение ядра в доменной стенке по оси X (измеряется в единицах ширины границы δ), $r = r_a/r_0$, r_a — радиальное положение ядра в границе, r_0 — радиус мембраны и d_m — относительное максимальное смещение рассматриваемой стенки (в единицах максимального смещения границы для рассматриваемого образца). Уменьшение амплитуды эхо-сигнала при больших уровнях возбуждения эха, как видно из формулы (2), обусловлено низкими эффективными коэффициентами усиления на ядрах, находящихся на краях доменной стенки.

В настоящей работе рассмотрим еще один подход к оценкам коэффициента усиления в магнитоупорядоченных веществах, изложенный в [12]. При изучении различных видов распределения коэффициентов усиления по ширине доменной границы было установлено, что можно определить средний коэффициент усиления η_{av} для ядер в доменной стенке. Поскольку в реальных образцах наблюдаются самые различные типы доменных границ и распределения коэффициентов усиления по ширине доменных границ, полученное выражение для

Рис. 3. Зависимость амплитуды эхо-сигнала A_e от временно́го интеравала t_{12} между двумя радиоимпульсами, возбуждающими эхо, и амплитуды высокочастотного магнитного поля h_1 : $h_1 = 16 \text{ mG}$ (1), $h_1 = 48 \text{ mG}$ (2), $h_1 = 1.34 \text{ G}$ (3) и $h_1 = 4.0 \text{ G}$ (4).

среднего коэффициента усиления в [12] является хорошей оценочной величиной рассматриваемого параметра в порошковых ферро- или ферримагнитных образцах. Формула, связывающая η_{av} , длительность радиочастотного импульса Δt и величину высокочастотного магнитного поля h_1^m , соответствующего максимуму в зависимости $A_e(h_1)$, согласно [12], имеет вид

$$\eta_{av} \cdot \gamma_n \cdot \Delta t \cdot h_1^m = 1, \tag{3}$$

где γ_n — гиромагнитное отношение для рассматриваемого ядра. Используя эту формулу и экспериментальные данные, представленные на рис. 2, оценим значения средних коэффициентов усиления η_{av} для исследуемых сплавов. Были получены следующие значения η_{av} : η_{av} (Fe) = 780, η_{av} (ScFe₂) = 17500, $\eta_{av}(\text{Sc}_{0.95}\text{Fe}_{2.05}) = 2600$ и $\eta_{av}(\text{ScFe}_{1.97}\text{Al}_{0.03}) = 1650.$ Видно, что средние значения коэффициентов усиления для ядер ⁴⁵Sc в доменных границах соответствующих сплавов значительно больше, чем η_{av} для ядер ⁵⁷Fe в железе. Заметим, что величина η_{av} для ⁵⁷Fe в железе в этой работе прекрасно совпадает со значением коэффициента $\eta_{av} \approx 900$, оцененным в [13] при температуре 77 К для ⁵⁷ Fe в порошке изотопического железа. Поскольку коэффициент усиления η_c пропорционален восприимчивости смещения χ , видно, что образцы сплавов ScFe₂ имеют более высокие значения восприимчивости смещения, чем в железе, а увеличение содержания железа или добавление Al в ScFe₂ резко уменьшает χ .

Были изучены зависимости амплитуды эхо-сигнала от временно́го интервала t_{12} между двумя радиоимпульсами, возбуждающими эхо, на частотах, соответствующих максимумам основных линий в рассматриваемых сплавах при температуре 77 К и разных значениях высокочастотного магнитного поля h_1 . Для образца сплава ScFe₂ эти зависимости показаны на рис. 3. При низких уровнях возбуждения имеются слабые колебания в кривых спада A_e , однако при больших уровнях h_1 наблюдается ярко выраженная осцилляция спада эхо-сигнала. Согласно рис. 2, эхо-сигнал при больших уровнях возбуждения h_1 наблюдается для ядер, находящихся на краю доменной границы. Аналогичная ситуация наблюдалась в гексагональном кобальте [14]. Как показано в работе [15], осцилляции амплитуды эхо-сигнала A_e , возникающие в зависимости $A_e(t_{12})$, обусловлены электронным квадрупольным взаимодействием. Период осцилляции τ связан с квадрупольным расщеплением Δv_a соотношением

$$\Delta v_q \cdot \tau = 1. \tag{4}$$

Из рис. 3 следует, что период модуляции τ равен 15 ± 1 µs, следовательно, $\Delta v_q = 66.6$ kHz. Аналогичные зависимости спада амплитуд эхо-сигнала в зависимости от t_{12} и h_1 были измерены для сплавов Sc_{0.95}Fe_{2.05} и ScFe_{1.97}Al_{0.03}. Период модуляции τ амплитуды эхосигнала в этих сплавах при 77 K был равен 15±1 µs. Как видно, электронное квадрупольное расщепление в рассматриваемых сплавах не зависит от технологии получения образцов, незначительных отклонений от стехиометрического состава сплава или малых добавок атомов Al.

Список литературы

- Диаграммы состояния двойных и многокомпонентных систем на основе железа. Справочник. Металлургия, М. (1986). 440 с.
- [2] P.H. Smit, K.H.J. Bushow. Phys. Rev. B21, 3839 (1980).
- [3] J. Shafer, K.H.J. Bushow. J. Magn. Magn. Mater. 6, 163 (1977).
- [4] V. Pokatilov, V. Golikova, A. Tvjashchenko, L. Fomichova. Hyperfine Interaction 59, 529 (1990).
- [5] В.С. Покатилов, И.И. Садчиков, О.В. Утенкова. Докл. АН СССР 281, 574 (1985).
- [6] В.С. Покатилов, И.И. Садчиков, Е.Ф. Сидохин, О.В. Утенкова. ФММ 62, 69 (1986).
- [7] R.H. Dean, R.J. Urwin. J. Phys. C: Solid Stat. Phys. 3, 1747 (1970).
- [8] М.Ю. Теслюк. Металлические соединения со структурами фаз Лавеса. Наука, М. (1969). 136 с.
- [9] K. Jkeda, T. Nakamichi, Y. Yamamoto. J. Phys. Soc. Japan 36, 611 (1974).
- [10] G. Wiesinger, A. Oppelt, K.H.J. Buschow. J. Magn. Magn. Mater. 22, 227 (1981).
- [11] M.B. Stearns. Phys. Rev. 162, 496 (1980).
- [12] R.W.N. Kinner, S.J. Campbell, D.H. Chaplin, G.V.H. Wilson. Phys. Stat. Sol. (a) 58, 507 (1980).
- [13] D.K. Fowler, D.C. Creach, R.W.N. Kinner, G.V.H. Wilson. Phys. Stat. Sol. (a) 92, 545 (1985).
- [14] H. Enokiya. J. Phys. Soc. Japan 42, 796 (1977).
- [15] H. Abe, H. Yasuoka, A. Hirai. J. Phys. Soc. Japan 21, 77 (1966).