Рекордные мощностные характеристики лазеров на основе InGaAs/AIGaAs/GaAs-гетероструктур

© Д.А. Лившиц, А.Ю. Егоров, И.В. Кочнев, В.А. Капитонов, В.М. Лантратов, Н.Н. Леденцов, Т.А. Налет, И.С. Тарасов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 4 сентября 2000 г. Принята к печати 5 сентября 2000 г.)

Выходные мощности в непрерывном режиме 9.2 Вт при постоянной температуре теплоотвода 10°С и 12.2 Вт в режиме стабилизации температуры активной области получены в лазере на основе InGaAs/AlGaAs (длина волны 1.03 мкм) с GaAs-волноводом толщиной 0.4 мкм. Достигнуты рекордно высокие плотности мощности на выходном зеркале 29.9 и 40 MBT/см² без катастрофической оптической деградации зеркал при двух режимах термостабилизации соответственно. В лазере с длиной резонатора 2 мм достигнут максимальный коэффициент полезного действия 66%.

Мощные полосковые лазеры с активной областью на длину волны в интервале $\lambda = 0.8 - 1.06$ мкм пользуются повышенным интересом благодаря широкому спектру их применения в качестве источников оптической накачки твердотельных волоконных лазеров, для прямого удвоения частоты, для лазерной сварки, в медицине и других областях.

Работы по одномодовым и многомодовым мощным лазерам ведутся уже давно [1,2], и к настоящему времени уже освоено производство 1- и 2-ваттных лазерных диодов с шириной полоска 100 мкм, работающих в непрерывном режиме генерации. Сложность повышения рабочей мощности таких диодов обычно связывают со следующими причинами. Первая причина — катастрофическая оптическая деградация зеркала (КОДЗ), ограничивающая максимальную выходную мощность [3]. Вторая причина — увеличение рабочей температуры лазерного кристалла по сравнению с температурой теплоотвода при прохождении тока, ведущее к снижению внешней дифференциальной эффективности и ускоренной деградации лазеров.

Величиной, характеризующей КОДЗ, является \bar{P} — плотность оптической мощности на выходном зеркале лазерного диода, при которой наступает КОДЗ [3]. В обзоре [4] приводятся максимально достигнутные величины \bar{P} для лазеров, содержащих A1 в активной области, 11 МВт/см². Максимальное для всех типов лазерных диодов значение выходной плотности мощности составляет, согласно [4], 19 МВт/см² и было получено в структуре InGaAs/InGaAsP/GaAs [5].

В данной работе мы показываем, что при оптимизации технологии нанесения высокоотражающего и просветляющего покрытий на зеркала лазера порог КОДЗ может быть существенно увеличен. Полученная нами в непрерывном режиме максимальная плотность оптической мощности на выходном зеркале лазера составила 29.9 MBt/cm² при стабилизированной температуре теплоотвода (10°C), т.е. при традиционном охлаждении лазера, и 40 MBt/cm² при стабилизации температуры чипа.

Уменьшение эффективности и ускоренная деградация лазеров на больших мощностях могут быть предотвращены за счет снижения температуры лазерного кристалла в рабочей точке. Количество тепла, выделяющегося в лазерном диоде, может быть уменьшено за счет повышения коэффициента полезного действия (кпд) прибора. Вместе с этим, перегрев активной области относительно теплоотвода можно уменьшить за счет увеличения длины лазера и, тем самым, увеличения эффективной площади, с которой осуществляется отвод тепла.

Коэффициент полезного действия лазерных диодов, согласно [6], есть

 η

$$_{c} = \eta_{d}(h\nu/q) \frac{I - I_{\rm th}}{I(V_{0} + I\sigma_{s}/LW)},$$
(1)

$$\eta_d = \eta_i \left(\frac{1}{2L} \ln \frac{1}{R_f R_r} \right) / \left(\alpha_i + \frac{1}{2L} \ln \frac{1}{R_f R_r} \right), \quad (2)$$

где R_f и R_r — коэффициенты отражения на передней и задней гранях лазера, $I_{\rm th}$ — пороговый ток, L — длина резонатора лазера, W — ширина полоска. Отсюда видно, что кпд зависит от внутренней квантовой эффективности η_i , напряжения отсечки V_0 , и σ_s — удельного электрического сопротивления структуры.

Таким образом, задача получения мощного лазерного диода сводится к повышению порога КОДЗ и к оптимизации параметров структуры с тем, чтобы достичь одновременного сочетания внутреннего квантового выхода 100%, низких оптических потерь, низкого последовательного сопротивления и напряжения отсечки, точно соответствующего ширине запрещенной зоны активной области.

Для решения этой задачи методом молекулярнопучковой эпитаксии (MBE) и газофазной эпитаксии из металлорганических соединений (MOCVD) было выращено более десяти гетероструктур с длиной волны генерации ~ 1 мкм. Они имеют самую простую конструкцию двойной гетероструктуры раздельного ограничения с оптимизированной схемой легирования. Структура состоит из нелегированного GaAs-волновода толщиной

Рис. 1. Схематическая зонная диаграмма (сплошная линия) и профиль легирования (штриховая) эпитаксиальных слоев структур, выращенных методами MOCVD и MBE.

Рис. 2. Зависимость обратной дифференциальной квантовой эффективности от длины резонатора лазеров на основе гетероструктур InGaAs/AlGaAs/GaAs.

0.4 мкм, в середине которого расположена напряженная квантовая яма InGaAs толщиной 80 Å. Схематически толщина, состав, ширина запрещенной зоны и уровень легирования эпитаксиальных слоев представлены на рис. 1. Легирование эмиттера осуществлялось Mg в MOCVD и Ве в MBE. Соответственно в MOCVD-структурах профиль *p*-легирования — более сглаженный из-за большего коэффициента диффузии магния.

Далее из структур с использованием стандартной последовательности постростовых операций изготавливались лазерные диоды конструкции "мелкая меза" с шириной полоска 100 мкм. В используемой конструкции снижено растекание тока по сильно легированным слоям за счет их протравливания до середины верхнего эмиттера. Омические контактные системы к *р*-и *n*-сторонам структуры были выполнены напылением ZnAu/CrAu/Au и GeAu/Au соответственно.

Структуры раскалывались по кристаллографическим направлениям на отдельные лазеры с разной длиной резонатора L. В импульсном режиме измерялись ваттамперные характеристики полученных приборов. По данным этих измерений вычислялись основные параметры: плотность тока прозрачности, внутренний квантовый выход и внутренние оптические потери α_i . Все структуры имели очень близкие характеристики, поэтому мы приводим данные для одной MOCVD- и одной МВЕ-структуры. На рис. 2 приведены зависимости обратной дифференциальной квантовой эффективности $1/\eta_d$ от длины резонатора для обеих структур. Из линейной аппроксимации находим внутреннюю квантовую эффективность η_i и внутренние оптические потери. Для МОСVD-структуры эти параметры составляют 98% и 1 см⁻¹, для MBE-структуры немного хуже — 95% и $1.6 \,\mathrm{cm}^{-1}$. Ток прозрачности составлял 62 и 75 A/см² соответственно.

Для работы в непрерывном режиме лазеры *p*-стороной с помощью индия напаивались на медные теплоотводы. На зеркала наносились интерференционные диэлектричекие покрытия SiO₂/Si, обеспечивающие коэффициент отражения 99 и 5% для заднего и переднего зеркал соответственно. В традиционной технологии исследований и производства полупроводниковых лазеров при нанесении покрытий на зеркала происходит некотролируемое подпыление диэлектрика на некоторую площадь р-контакта вблизи зеркал лазера, вследствие чего эта площадь остается непропаянной при монтаже чипа, и на этом участке заметно ухудшается отвод тепла в процессе работы лазера. Используемая нами технология нанесения зеркал полностью предотвращает подпыление диэлектрика и обеспечивает наилучшее охлаждение выходной грани лазера.

Для измерений в непрерывном режиме лазер на теплоотводе устанавливался на термохолодильник, позволяющий поддерживать температуру постоянной в широком диапазоне. Измерения производились в двух режимах термостабилизации. Первый режим — традиционно используемый, когда термодатчик обратной связи устанавливается на теплоотводе. Этот метод обладает существенным недостатком, связанным с тем, что реальная температура лазерного чипа сильно зависит от места установки термодатчика из-за градиента температуры по теплоотводу. Это затрудняет сравнение характеристик лазеров, измеренных на разных установках. Поэтому нами применялся и другой метод измерения. Здесь использовался второй термодатчик, установленный непосредственно на *п*-контакт лазерного чипа. Этот датчик являлся задающим в цепи обратной связи термостабилизации. Согласно [7], температура активной области лазера в таком режиме отличается от температуры, измеряемой

Рис. 3. Зависимости напряжения и выходной мощности лазерного диода с шириной полоска W = 100 мкм от тока накачки в непрерывном режиме. Длина резонатора L = 1.34 мкм, высокоотражающее (99%) и низкоотражающее (5%) покрытия на гранях. I — вольт-амперная характеристика и 2 — ватт-амперная характеристика в режиме стабилизации температуры активной области 10° С. 3 — ватт-амперная характеристика в режиме стабилизации температуры теплоотвода 10° С.

Рис. 4. Зависимости коэффициента полезного действия лазеров на основе InGaAs/AlGaAs/GaAs от тока накачки.

термодатчиком, не более чем на 4°С. Таким образом, при данном измерении можно считать, что лазер находится при постоянной температуре активной области.

На рис. 3 представлены зависимости выходной мощности и напряжения от протекающего тока для лазера из структуры, выращенной методом MOCVD. Из данных, приведенных на рисунке, найдены пороговый ток 165 мА, дифференциальная эффективность и дифференциальная квантовая эффективность, которые составили соответственно 0.97 Вт/А и 80%, напряжение отсечки ~ 1.24 В и последовательное дифференциальное сопротивление $R_s = 51$ мОм, что на единицу площади составляет $\sigma_s = 0.68 \cdot 10^{-4}$ Ом · см². Сочетание внутренней квантовой эффективности, близкой к 100%, внутренних оптических потерь ~ 1 см⁻¹ и оптимальных электрических параметров соответствует лучшим из опубликованных результатов [6]. Напряжение отсечки, точно соответствующее ширине запрещенной зоны активной области, и низкое последовательное сопротивление лазерной структуры свидетельствуют об отсутствии дополнительных электрических барьеров и оптимальном профиле легирования данной структуры.

Как следствие, кпд данных лазеров является очень высоким. На рис. 4 представлены экспериментальные зависимости кпд от тока накачки для лазера с длиной резонатора 1.34 и 2 мм при температуре теплоотвода 10°С. Максимальные значения кпд составляют соответственно 66 и 65%. Более того, лазер с длиной резонатора 2 мм сохраняет кпд выше 60% до выходной мощности 6 Вт. Эти результаты также являются лучшими из известных нам для всех типов полупроводниковых лазеров [7].

При традиционном измерении с поддержанием постоянной температуры 10°С на теплоотводе максимальный ток был ограничен 12 А, чтобы предотвратить деградацию гетероструктуры (рис. 3). На этом токе была зафиксирована выходная мощность 9.2 Вт, а температура активной области, измеренная вторым термодатчиком, составила +56°С. Повышение температуры активной области вызывает увеличение порогового тока, падение квантовой эффективности и уменьшение энергии кванта. Все это приводит к загибу ватт-амперной характеристики на больших токах и препятствует получению максимальной мощности и определению порога КОДЗ. При аналогичном режиме охлаждения были получены и большие максимальные мощности на лазерах с апертурой 100 мкм в непрерывном режиме генерации. В системе InGaAs/AlGaAs/GaAs зафиксирована наибольшая мощность 10.9 Вт с использованием более эффективного алмазного теплоотвода [8], в системе InGaAs/InGaAsP/GaAs максимальная мощность составила 11 Вт [5]. Однако эти результаты были получены на структурах с расширенным волноводом (> 1 мкм), что снижает плотность мощности на выходном зеркале.

Достигнутая максимальная плотность мощности *P* определяется из

$$\bar{P} = P_{\max,cw} \frac{1}{W(d/\Gamma)} \left(\frac{1+R_f}{1-R_f}\right),\tag{3}$$

где $P_{\max,cw}$ — максимально достигнутая выходная оптическая мощность в непрерывном режиме, d/Γ — величина, характеризующая поперечный размер световой волны (d — толщина активной области, Γ — фактор оптического ограничения активной области) [3]. При

Рис. 5. Картины ближнего поля излучения лазера в плоскости p-n-перехода (координата Z) при разных токах накачки.

использовании расширенного волновода ~ 1 мкм значение d/Γ составляет 0.55–0.70 мкм в зависимости от показателей преломления материалов волновода и эмиттера. В нашем случае при общей толщине волновода 0.4 мкм она составляет 0.34 мкм (на длине волны генерации $\lambda = 1.03$ мкм). Такое значение d/Γ хорошо согласуется с наблюдаемой картиной дальнего поля в направлении, перпендикулярном p-n-переходу. Ширина поля на полувысоте составляла $\theta_{1/2} = 52^{\circ}$. Тогда вычисленная по формуле (3) плотность мощности в максимуме световой волны на переднем зеркале при выходной мощности 9.2 Вт составляет 29.9 MBT/см².

Измерение вторым способом со стабилизацией температуры ($T = 10^{\circ}$ С) лазерного кристалла исключает разогрев активной области, что обеспечивает линейность ватт-амперной и вольт-амперной характеристик и достижение максимальной мощности излучения, которая составила 12.2 Вт при токе 13.3 А (рис. 3). Температура теплоотвода при максимальной выходной мощности составляла –26°С. Максимальной выходной мощности составляла –26°С. Максимальная плотность оптической мощности на выходном зеркале лазера, рассчитанная по формуле (3), составила 40 MBt/см². После деградации лазера на мощности 12.2 Вт на его выходном зеркале не было отмечено каких-либо изменений, т.е. произошла деградация в объеме гетероструктуры, а не из-за разрушения зеркала, и, значит порог КОДЗ находится еще выше.

По нашему мнению, выраженение (3) не совсем точно отражает картину при больших плотностях тока накачки, так как с увеличением тока ближнее поле излучения лазера расширяется за пределы "номинальной" ширины полоска W. Увеличение ширины ближнего поля по сравнению с W зависит от конструкции лазерного диода. Так, например, при использовании оксидного полоска ширина ближнего поля может в несколько раз превосходить W. Поэтому мы предлагаем в формуле (3) вместо ширины полоска W использовать ширину ближнего поля на полувысоте $W_{\rm FWHM}$ при максимальном токе. В нашем случае, несмотря на использование конструкции "мелкая меза", также наблюдается небольшое расширение ближнего поля излучения лазера. Измерения на том же лазере в импульсном режиме (рис. 5) показали, что ширина ближнего поля на полувысоте над порогом составляла 98 мкм, а при токе 12 А увеличивалась до 122 мкм. Если учесть расширение ближнего поля, то максимальная плотность мощности, полученная нами, составляте 24.5 MBt/см². Даже эта величина значительно превосходит ранее достигнутые плотности мощности ~ 19 MBt/см² на лазерах с расширенным волноводом [3–5,8,9].

Лазерные диоды на базе структур, полученных методом MBE, также имеют хорошие мощностные и электрические характеристики. Максимальная достигнутая мощность в непрерывном режиме при стабилизированной температуре теплоотвода 20°С составила 8.5 Вт.

Были проведены исследования деградационных свойств. Испытания проводились на токе 4 А и выходной мощности 3.3 Вт при температуре теплоотвода 30°С в течение 1000 ч. На лазерах на базе МВЕ-структур изменения выходной мощности в течение испытания не превысили 3%. Лазеры на базе MOCVD-структур имели большой разброс по деградационным параметрам, что ΜЫ связываем с качеством подложек для эпитаксиального роста. В методе MOCVD применялись подложки GaAs марки АГНК-3 с плотностью дислокаций по поверхности более $10^3 \, \text{см}^{-2}$, тогда как для MBE использовались подложки производства фирмы "АХТ" с плотностью дислокаций $10^2 \, \text{сm}^{-2}$.

В заключение подчеркнем, что максимальная выходная мощность лазерного диода с апертурой W = 100 мкм в непрерывном режиме генерации составила 9.2 Вт при температуре теплоотвода 10°С и 12.2 Вт при стабилизированной температуре активной области. Достигнуты коэффициент полезного действия 66% и рекордная плотность оптической мощности на выходном зеркале $29.9 \,\mathrm{MBt/cm^2}$, более чем в 1.5 раза превышающая ранее опубликованную величину, а при более интенсивном охлаждении лазера с поддержанием температуры активной области получена величина 40 MBт/см². Мы показали, что максимальная выходная мощность, кпд, оптическая прочность зеркал и срок службы лазерных диодов зависят от качества подложки и эпитаксиальных слоев, схемы легирования гетероструктуры, а также от технологии нанесения покрытий на зеркала и монтажа лазера на теплоотвод. Полученные результаты свидетельствуют, что возможно достижение рекордных мощностных характеристик без применения сложных гетероструктур, как в [9], и сложных технологий защиты зеркал, как в [10].

Авторы выражают благодарность Е.А. Третьяковой и Т.Н. Дрокиной за помощь в проведении технологических операций.

Список литературы

- D.Z. Garbuzov, N.Y. Antonishkis, A.D. Bondarev, A.B. Gulakov, S.N. Zhigulin, N.I. Katsavets, A.V. Kochergin, E.U. Rafailov. IEEE J. Quant. Electron., 27, 1531 (1991).
- [2] D.Z. Garbuzov, N.Ju. Antonishkis, S.N. Zhigulin, N.D. Il'inskaya, A.V. Kochergin, D.A. Livshits, E.U. Rafailov, M.V. Fuksman. Appl. Phys. Lett., 62, 1062 (1993).
- [3] D. Botez. Appl. Phys. Lett., 74, 3102 (1999).
- [4] D. Botez. Compound Semiconductors, 5 (6), 24–29 (1999).
- [5] A. Al-Muhanna, L. Mawst, D. Botez, D. Garbuzov, R. Martinelli. J. Connolly. Appl. Phys. Lett., 73, 1182 (1998).
- [6] J. Wang, B. Smith, X. Xie, X. Wang, G.T. Burnham. Appl. Phys. Lett., 74 (11), 1525 (1999).
- [7] D. Garbuzov, M. Maiorov, V. Khalfin, M. Harvey, A. Al-Muhanna, L. Mawst, D. Botez, J. Connolly. *SPIE Photonics West Conference'99* (San Jose, CA, 1999) paper 3625-93.
- [8] X. He, S. Srinivasan, S. Wilson, C. Mitchell, R. Patel. Electron. Lett., 34 (22), 2126 (1998).
- [9] D.A. Livshits, E.Yu. Kotelnikov, A.A. Katsnelson, W. Richter, V.P. Evtihiev, I.S. Tarasov, Zh.I. Alferov. *Proc. 8-th Int. Symp.* "Nanostructures: Physics and Technology" (St. Petersburg, 2000) p. 31.
- [10] J.K. Lee, K.H. Pack, D.H. Jang, H.S. Cho, C.S. Park, K.E. Pyun, J. Jeong. IEEE Photon. Technol. Lett., **10** (9), 1226 (1998).

Редактор Л.В. Шаронова

Record power characteristics of InGaAs/AIGaAs/GaAs-heterostructurebased lasers

D.A. Livshits, A.Yu. Egorov, I.V. Kochnev, V.A. Kapitonov, V.M. Lantratov, N.N. Ledentsov, T.A. Nalyot, I.S. Tarasov

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The 9.2 W continuous wave optical power at heatsink temperature 10°C and 12.2 W under regime of the active region stabilized temperature has been observed on the InGaAs/AlGaAs ($\lambda = 1.03 \,\mu$ m) laser diode with the 0.4 μ m width GaAs waveguide. Excessive high power densities of 29.8 MW/cm² and 40 MW/cm² have been accordingly achieved at the front facet without any catastrophic optical mirror damage (COMD). The power conversion efficiency as high as 66% has been measured for a 2 mm long laser diode.